“Stochastic tomography and its applications in 3D imaging of mixing fluids” by Gregson, Krimerman, Hullin and Heidrich

  • ©James Gregson, Michael Krimerman, Matthias B. Hullin, and Wolfgang Heidrich




    Stochastic tomography and its applications in 3D imaging of mixing fluids



    We present a novel approach for highly detailed 3D imaging of turbulent fluid mixing behaviors. The method is based on visible light computed tomography, and is made possible by a new stochastic tomographic reconstruction algorithm based on random walks. We show that this new stochastic algorithm is competitive with specialized tomography solvers such as SART, but can also easily include arbitrary convex regularizers that make it possible to obtain high-quality reconstructions with a very small number of views. Finally, we demonstrate that the same stochastic tomography approach can also be used to directly re-render arbitrary 2D projections without the need to ever store a 3D volume grid.


    1. Alexander, O., Rogers, M., Lambeth, W., Chiang, M., and Debevec, P. 2009. The Digital Emily project: photoreal facial modeling and animation. In SIGGRAPH Courses, 1–15. Google ScholarDigital Library
    2. Andersen, A., and Kak, A. 1984. Simultaneous algebraic reconstruction technique (SART): A superior implementation of the ART algorithm. Ultrasonic Imaging 6, 1, 81–94.Google ScholarCross Ref
    3. Atcheson, B., Ihrke, I., Heidrich, W., Tevs, A., Bradley, D., Magnor, M., and Seidel, H.-P. 2008. Time-resolved 3D capture of non-stationary gas flows. ACM Trans. Graph. (Proc. SIGGRAPH Asia) 27, 5, 132. Google ScholarDigital Library
    4. Barbuzza, R., and Clausse, A. 2011. Metropolis Monte Carlo for tomographic reconstruction with prior smoothness information. Image Processing, IET 5, 2 (Mar.), 198–204.Google ScholarCross Ref
    5. Bickel, B., Botsch, M., Angst, R., and Miguel Otaduy, W. M., Pfister, H., and Gross, M. 2007. Multi-scale capture of facial geometry and motion. ACM Trans. Graph. (Proc. SIGGRAPH), 33. Google ScholarDigital Library
    6. Bradley, D., Popa, T., Sheffer, A., Heidrich, W., and Boubekeur, T. 2008. Markerless garment capture. ACM Trans. Graph. (Proc. SIGGRAPH) 27, 3, 99. Google ScholarDigital Library
    7. Bradley, D., Atcheson, B., Ihrke, I., and Heidrich, W. 2009. Synchronization and rolling shutter compensation for consumer video camera arrays. In Proc. PROCAMS.Google Scholar
    8. Cline, D., Talbot, J., and Egbert, P. 2005. Energy redistribution path tracing. ACM Trans. Graph. 24 (July), 1186–1195. Google ScholarDigital Library
    9. de Aguiar, E., Theobalt, C., Stoll, C., and Seidel, H.-P. 2007. Marker-less deformable mesh tracking for human shape and motion capture. In Proc. CVPR.Google Scholar
    10. de Aguiar, E., Stoll, C., Theobalt, C., Ahmed, N., eidel, H.-P. S., and Thrun, S. 2008. Performance capture from sparse multi-view video. ACM Trans. Graph. (Proc. SIGGRAPH). Google ScholarDigital Library
    11. Grant, I. 1997. Particle image velocimetry: A review. J. Mech. Eng. Science 211, 1, 55–76.Google ScholarCross Ref
    12. Hasinoff, S., and Kutulakos, K. 2007. Photo-Consistent 3D Fire by Flame-Sheet Decomposition. IEEE Trans. PAMI 29, 5, 870–885. Google ScholarDigital Library
    13. Hastings, W. K. 1970. Monte Carlo sampling methods using Markov chains and their applications. Biometrika 57, 1, 97–109.Google ScholarCross Ref
    14. Hawkins, T., Einarsson, P., and Debevec, P. 2005. Acquisition of Time-varying Participating Media. ACM Trans. Graph. (Proc. SIGGRAPH) 24, 3, 812–815. Google ScholarDigital Library
    15. Ihrke, I., and Magnor, M. 2004. Image-Based Tomographic Reconstruction of Flames. In Proc. SCA, 367–375. Google ScholarDigital Library
    16. Ihrke, I., Goldluecke, B., and Magnor, M. 2005. Reconstructing the Geometry of Flowing Water. In Proc. ICCV, 1055–1060. Google ScholarDigital Library
    17. Kak, A. C., and Slaney, M. 2001. Principles of computerized tomographic imaging. SIAM. Google ScholarDigital Library
    18. Lanman, D., Wetzstein, G., Hirsch, M., Heidrich, W., and Raskar, R. 2011. Polarization fields: Dynamic light field display using multi-layer LCDs. ACM Trans. Graph. (Proc. SIGGRAPH) 30, 6. Google ScholarDigital Library
    19. Metropolis, N., Rosenbluth, A. W., Rosenbluth, M. N., Teller, A. H., and Teller, E. 1953. Equation of state calculations by fast computing machines. J. Chem. Phys. 21, 6, 1087–1092.Google ScholarCross Ref
    20. Morris, N. J. W., and Kutulakos, K. N. 2005. Dynamic refraction stereo. In Proc. ICCV, 1573–1580. Google ScholarDigital Library
    21. Parzen, E. 1962. On estimation of a probability density function and mode. Ann. Math. Stat. 33, 1065–1076.Google ScholarCross Ref
    22. Rouf, M., Mantiuk, R., Heidrich, W., Trentacoste, M., and Lau, C. 2011. Glare encoding of high dynamic range images. In Proc. CVPR. Google ScholarDigital Library
    23. Shepp, L. A., and Vardi, Y. 1982. Maximum likelihood reconstruction for emission tomography. IEEE Trans. Med. Imag. 1, 2 (Oct.), 113–122.Google ScholarCross Ref
    24. Srinivasan, A., and Aggarwal, V. 2003. Stochastic linear solvers. In Proc. SIAM Conf. Applied Linear Algebra.Google Scholar
    25. Srinivasan, A. 2010. Monte Carlo linear solvers with nondiagonal splitting. Mathematics and Computers in Simulation 80, 6, 1133–1143. Google ScholarDigital Library
    26. Talton, J., Lou, Y., Lesser, S., Duke, J., Méch, R., and Koltun, V. 2011. Metropolis procedural modeling. ACM Trans. Graph. 30, 2 (April). Google ScholarDigital Library
    27. Trifonov, B., Bradley, D., and Heidrich, W. 2006. Tomographic Reconstruction of Transparent Objects. In Proc. EGSR, 51–60. Google ScholarDigital Library
    28. Veach, E., and Guibas, L. J. 1997. Metropolis light transport. In Computer Graphics (Proc. SIGGRAPH ’97), 65–76. Google ScholarDigital Library
    29. Wang, H., Liao, M., Zhang, Q., Yang, R., and Turk, G. 2009. Physically guided liquid surface modeling from videos. ACM Trans. Graph. 28 (July), 90:1–90:11. Google ScholarDigital Library
    30. Wetzstein, G., Heidrich, W., and Raskar, R. 2011. Refractive shape from light field distortion. In Proc. ICCV. Google ScholarDigital Library
    31. Wetzstein, G., Lanman, D., Heidrich, W., and Raskar, R. 2011. Layered 3D: Tomographic image synthesis for attenuation-based light field and high dynamic range displays. ACM Trans. Graph. 30, 4. Google ScholarDigital Library
    32. White, R., Crane, K., and Forsyth, D. 2007. Capturing and animating occluded cloth. ACM Trans. Graph. (Proc. SIGGRAPH), 34. Google ScholarDigital Library
    33. Xu, Q., Mou, X., Wang, G., Sieren, J., Hoffman, E., and Yu, H. 2011. Statistical interior tomography. IEEE Trans. Med. Imag. 30, 5 (May), 1116–1128.Google ScholarCross Ref
    34. Yu, H., and Wang, G. 2009. Compressed sensing based interior tomography. Physics in medicine and biology 54, 2791.Google Scholar

ACM Digital Library Publication: