“Stitch meshes for modeling knitted clothing with yarn-level detail” by Yuksel, Kaldor, James and Marschner

  • ©Cem Yuksel, Jonathan M. Kaldor, Doug L. James, and Steve Marschner




    Stitch meshes for modeling knitted clothing with yarn-level detail



    Recent yarn-based simulation techniques permit realistic and efficient dynamic simulation of knitted clothing, but producing the required yarn-level models remains a challenge. The lack of practical modeling techniques significantly limits the diversity and complexity of knitted garments that can be simulated. We propose a new modeling technique that builds yarn-level models of complex knitted garments for virtual characters. We start with a polygonal model that represents the large-scale surface of the knitted cloth. Using this mesh as an input, our interactive modeling tool produces a finer mesh representing the layout of stitches in the garment, which we call the stitch mesh. By manipulating this mesh and assigning stitch types to its faces, the user can replicate a variety of complicated knitting patterns. The curve model representing the yarn is generated from the stitch mesh, then the final shape is computed by a yarn-level physical simulation that locally relaxes the yarn into realistic shape while preserving global shape of the garment and avoiding “yarn pull-through,” thereby producing valid yarn geometry suitable for dynamic simulation. Using our system, we can efficiently create yarn-level models of knitted clothing with a rich variety of patterns that would be completely impractical to model using traditional techniques. We show a variety of example knitting patterns and full-scale garments produced using our system.


    1. Akleman, E., Chen, J., Xing, Q., and Gross, J. L. 2009. Cyclic plain-weaving on polygonal mesh surfaces with graph rotation systems. ACM T. Graph. (SIGGRAPH’09) 28, 3, 78. Google ScholarDigital Library
    2. Allen, P., Barr, T., and Okey, S. 2008. Knitting For Dummies. Wiley Publishing.Google Scholar
    3. Baraff, D., and Witkin, A. 1998. Large steps in cloth simulation. ACM SIGGRAPH’98, 43–54. Google ScholarDigital Library
    4. Bergou, M., Mathur, S., Wardetzky, M., and Grinspun, E. 2007. TRACKS: Toward Directable Thin Shells. ACM T. Graph. (SIGGRAPH’07) 26, 3, 50. Google ScholarDigital Library
    5. Bridson, R., Fedkiw, R., and john Anderson. 2002. Robust treatment of collisions, contact and friction for cloth animation. ACM T. Graph. (SIGGRAPH’02), 594–603. Google ScholarDigital Library
    6. Cabral, M., Lefebvre, S., Dachsbacher, C., and Drettakis, G. 2009. Structure-preserving reshape for textured architectural scenes. CG Forum (Eurographics) 28, 2, 469–480.Google ScholarCross Ref
    7. Carignan, M., Yang, Y., Thalmann, N. M., and Thalmann, D. 1992. Dressing animated synthetic actors with complex deformable clothes. ACM SIGGRAPH’92, 99–104. Google ScholarDigital Library
    8. Catmull, E., and Clark, J. 1978. Recursively generated b-spline surfaces on arbitrary topological meshes. Computer-Aided Design 10, 6, 350–355.Google ScholarCross Ref
    9. Choi, K., and Lo, T. 2003. An energy model of plain knitted fabric. Textile Research Jour. 73, 739–748.Google ScholarCross Ref
    10. Choi, K., and Lo, T. 2006. The shape and dimensions of plain knitted fabric: A fabric mechanical model. Textile Research Jour. 76, 10, 777–786.Google ScholarCross Ref
    11. Chu, L. 2005. A Framework for Extracting Cloth Descriptors from the Underlying Yarn Structure. PhD thesis, University of California, Berkeley.Google Scholar
    12. Decaudin, P., Julius, D., Wither, J., Boissieux, L., Sheffer, A., and Cani, M.-P. 2006. Virtual garments: A fully geometric approach for clothing design. CG Forum (Eurographics) 25, 3, 625–634.Google ScholarCross Ref
    13. Demiroz, A., and Dias, T. 2000. A study of the graphical representation of plain-knitted structures part I: Stitch model for the graphical representation of plain-knitted structures. Journal of the Textile Institute 91, 463–480.Google ScholarCross Ref
    14. Duhovic, M., and Bhattacharyya, D. 2006. Simulating the deformation mechanisms of knitted fabric composites. Composites Part A: Applied Science and Manufactur. 37, 11, 1897–1915.Google ScholarCross Ref
    15. Eberhardt, B., Meissner, M., and Strasser, W. 2000. Knit fabrics. In Cloth Modeling and Animation, D. House and D. Breen, Eds. A K Peters, ch. 5, 123–144. Google ScholarDigital Library
    16. Floater, M. S. 2003. Mean value coordinates. Computer Aided Geometric Design 20, 1, 19–27. Google ScholarDigital Library
    17. Göktepe, O., and Harlock, S. C. 2002. Three-dimensional computer modeling of warp knitted structures. Textile Research Jour. 72, 266–272.Google ScholarCross Ref
    18. Goldenthal, R., Harmon, D., Fattal, R., Bercovier, M., and Grinspun, E. 2007. Efficient simulation of inextensible cloth. ACM T. Graph. (SIGGRAPH’07) 26, 3, 49. Google ScholarDigital Library
    19. Grinspun, E., Hirani, A., Desbrun, M., and Schröder, P. 2003. Discrete shells. Symp. on Computer Animation, 62–67. Google ScholarDigital Library
    20. Heeger, D. J., and Bergen, J. R. 1995. Pyramid-based texture analysis/synthesis. In ACM SIGGRAPH’95, 229–238. Google ScholarDigital Library
    21. Igarashi, T., and Mitani, J. 2010. Apparent layer operations for the manipulation of deformable objects. ACM T. Graph. (SIGGRAPH’10) 29, 4, 110. Google ScholarDigital Library
    22. Igarashi, Y., Igarashi, T., and Suzuki, H. 2008. Knitting a 3D Model. CG Forum (Eurographics) 27, 7, 1737–1743.Google ScholarCross Ref
    23. Igarashi, Y., Igarashi, T., and Suzuki, H. 2008. Knitty: 3D Modeling of Knitted Animals with a Production Assistant Interface. Eurographics 2008 Annex to Conf. Proc., 187–190.Google Scholar
    24. Kaldor, J. M., James, D. L., and Marschner, S. 2008. Simulating knitted cloth at the yarn level. ACM T. Graph. (SIGGRAPH’08) 27, 3, 65. Google ScholarDigital Library
    25. Kaldor, J. M., James, D. L., and Marschner, S. 2010. Efficient yarn-based cloth with adaptive contact linearization. ACM T. Graph. (SIGGRAPH’10) 29, 4, 105. Google ScholarDigital Library
    26. Kaldor, J. 2011. Simulating Yarn-Based Cloth. PhD thesis, Cornell University.Google Scholar
    27. Kurbak, A., and Alpyildiz, T. 2008. A geometrical model for the double lacoste knits. Textile Research Jour. 78, 3, 232–247.Google ScholarCross Ref
    28. Kurbak, A., and Soydan, A. S. 2009. Geometrical models for balanced rib knitted fabrics part III: 2×2, 3×3, 4×4, and 5×5 rib fabrics. Textile Research Jour. 79, 7, 618–625.Google ScholarCross Ref
    29. Kurbak, A. 2009. Geometrical models for balanced rib knitted fabrics part I: Conventionally knitted 1×1 rib fabrics. Textile Research Jour. 79, 5, 418–435.Google ScholarCross Ref
    30. Kwatra, V., Schödl, A., Essa, I., Turk, G., and Bobick, A. 2003. Graphcut textures: image and video synthesis using graph cuts. ACM T. Graph. (SIGGRAPH’03) 22, 3, 277–286. Google ScholarDigital Library
    31. Lai, Y.-K., Jin, M., Xie, X., He, Y., Palacios, J., Zhang, E., Hu, S.-M., and Gu, X. 2010. Metric-driven rosy field design and remeshing. IEEE Trans. on Viz. Comp. Graph. 16, 95–108. Google ScholarDigital Library
    32. Luo, Z. G., and Yuen, M. 2005. Reactive 2D/3D garment pattern design modification. CAD 37, 6, 623–630. Google ScholarDigital Library
    33. Matthews, A. 1984. Vogue Dictionary of Knitting Stitches. The Condé Nast Publications, Ltd., New York, NY.Google Scholar
    34. Meissner, M., and Eberhardt, B. 1998. The art of knitted fabrics, realistic physically based modelling of knitted patterns. CG Forum (Eurographics) 17, 3, 355–362.Google ScholarCross Ref
    35. Mori, Y., and Igarashi, T. 2007. Plushie: an interactive design system for plush toys. ACM T. Graph (SIGGRAPH’07) 26, 3, 45. Google ScholarDigital Library
    36. Nocent, O., Nourrit, J.-M., and Remion, Y. 2001. Towards mechanical level of detail for knitwear simulation. In WSCG 2001 Conference Proceedings, 252–259.Google Scholar
    37. Renkens, W., and Kyosev, Y. 2011. Geometry modelling of warp knitted fabrics with 3D form. Textile Research Jour. 81, 4, 437–443.Google ScholarCross Ref
    38. Robson, C., Maharik, R., Sheffer, A., and Carr, N. 2011. Context-aware garment modeling from sketches. Computers and Graphics (SMI 2011) 35, 3, 604–613. Google ScholarDigital Library
    39. Turquin, E., Wither, J., Boissieux, L., Cani, M.-P., and Hughes, J. 2007. A sketch-based interface for clothing virtual characters. IEEE Comp. Graph. and Applications 27, 1, 72–81. Google ScholarDigital Library
    40. Umetani, N., Kaufman, D. M., Igarashi, T., and Grinspun, E. 2011. Sensitive couture for interactive garment editing and modeling. ACM T. Graph. (SIGGRAPH’11) 30, 4, 90. Google ScholarDigital Library
    41. Volino, P., and Magnenat-Thalmann, N. 2000. Virtual Clothing: Theory and Practice. Springer.Google ScholarCross Ref
    42. Volino, P., and Magnenat-Thalmann, N. 2005. Accurate garment prototyping and simulation. CAD & App. 2, 5, 645–654.Google Scholar
    43. Volino, P., Magnenat-Thalmann, N., and Faure, F. 2009. A simple approach to nonlinear tensile stiffness for accurate cloth simulation. ACM T. Graph. 28, 4, 105. Google ScholarDigital Library
    44. Walker, B. G. 2001. A Fourth Treasury of Knitting Patterns. Schoolhouse Press, Pittsville, WI.Google Scholar
    45. Zhou, K., Huang, X., Wang, X., Tong, Y., Desbrun, M., Guo, B., and Shum, H.-Y. 2006. Mesh quilting for geometric texture synthesis. ACM T. Graph. (SIGGRAPH’06) 25, 3, 690. Google ScholarDigital Library

ACM Digital Library Publication: