“Specular Reflection From Woven Cloth” by Irawan and Marschner

  • ©Piti Irawan and Steve Marschner




    Specular Reflection From Woven Cloth



    The appearance of a particular fabric is produced by variations in both large-scale reflectance and small-scale texture as the viewing and illumination angles change across the surface. This article presents a study of the reflectance and texture of woven cloth that aims to identify and model important optical features of cloth appearance. New measurements are reported for a range of fabrics including natural and synthetic fibers as well as staple and filament yarns. A new scattering model for woven cloth is introduced that describes the reflectance and the texture based on an analysis of specular reflection from the fibers. Unlike data-based models, our procedural model doesn’t require image data. It can handle a wide range of fabrics using a small set of physically meaningful parameters that describe the characteristics of the fibers, the geometry of the yarns, and the pattern of the weave. The model is validated against the measurements and evaluated by comparisons to high-resolution video of the real fabrics and to BTF models of two of the fabrics.


    Adabala, N., Magnenat-Thalmann, N., and Fei, G. 2003. Visualization of woven cloth. In Proceedings of the Eurographics Workshop on Rendering. 178–185. Google ScholarDigital Library
    Arfken, G. B., Weber, H. J., and Weber, H.-J. 1995. In Mathematical Methods for Physicists, 4th Ed. Academic Press, Chapter 11.5.Google Scholar
    Ashikhmin, M., Premože, S., and Shirley, P. 2000. A microfacet-based BRDF generator. In Proceedings of the SIGGRAPH Conference. 65–74. Google ScholarDigital Library
    Buck, G. S. and McCord, F. A. 1949. Luster and cotton. Textile Res. J. 19, 11, 715–754.Google ScholarCross Ref
    Dana, K. J., van Ginneken, B., Nayar, S. K., and Koenderink, J. J. 1999. Reflectance and texture of real-world surfaces. ACM Trans. Graph. 18, 1, 1–34. Google ScholarDigital Library
    Daubert, K., Lensch, H. P. A., Heidrich, W., and Seidel, H.-P. 2001. Efficient cloth modeling and rendering. In Proceedings of the Eurographics Workshop on Rendering. 63–70. Google ScholarDigital Library
    Dong, Y., Wang, J., Tong, X., Snyder, J., Lan, Y., Ben-Ezra, M., and Guo, B. 2010. Manifold bootstrapping for SVBRDF capture. ACM Trans. Graph. 29, 4. Google ScholarDigital Library
    Drago, F. and Chiba, N. 2004. Painting canvas synthesis. Vis. Comput. 20, 5, 314–328. Google ScholarDigital Library
    Dutré, P., Bekaert, P., and Bala, K. 2003. Advanced Global Illumination. A K Peters, Natick, MA. Google ScholarDigital Library
    Evans, M., Hastings, N., and Peacock, B. 2000. Statistical Distributions, 3rd Ed. Wiley-Interscience, New York, Chapter 41.Google Scholar
    Hanrahan, P. and Krueger, W. 1993. Reflection from layered surfaces due to subsurface scattering. In Proceedings of the SIGGRAPH Conference. 165–174. Google ScholarDigital Library
    Havran, V., Filip, J., and Myszkowski, K. 2010. Bidirectional texture function compression based on multi-level vector quantization. Comp. Graph. Forum 29, 1, 175–190.Google ScholarCross Ref
    Hunter, R. S. and Herald, R. W. 1987. The Measurement of Appearance, 2nd Ed. Wiley-Interscience, New York.Google Scholar
    Irawan, P. 2007. Appearance of woven cloth. Ph.D. thesis, Cornell University. Google ScholarDigital Library
    Irawan, P. and Marschner, S. R. 2006. A simple, accurate texture model for woven cotton cloth. Tech. rep. PCG-06-01, Cornell University.Google Scholar
    Jakob, W. 2011. Mitsuba physically based renderer. mitsuba-renderer.org.Google Scholar
    Kajiya, J. T. and Kay, T. L. 1989. Rendering fur with three dimensional textures. In Proceedings of the SIGGRAPH Conference. 271–280. Google ScholarDigital Library
    Kautz, J., Boulos, S., and Durand, F. 2007. Interactive editing and modeling of bidirectional texture functions. ACM Trans. Graph. 26, 3. Google ScholarDigital Library
    Lu, R., Koenderink, J. J., and Kappers, A. M. L. 1998. Optical properties (bidirectional reflection distribution functions) of velvet. Appl. Opt. 37, 25, 5974–5984.Google ScholarCross Ref
    Lu, R., Koenderink, J. J., and Kappers, A. M. L. 2000. Specularities on surfaces with tangential hairs or grooves. Comput. Vis. Image Underst. 78, 3, 320–335. Google ScholarDigital Library
    Marschner, S. R., Jensen, H. W., Cammarano, M., Worley, S., and Hanrahan, P. 2003. Light scattering from human hair fibers. ACM Trans. Graph. 22, 3, 780–791. Google ScholarDigital Library
    Marschner, S. R., Westin, S. H., Arbree, A., and Moon, J. T. 2005. Measuring and modeling the appearance of finished wood. ACM Trans. Graph. 24, 3, 727–734. Google ScholarDigital Library
    McAllister, D. K., Lastra, A., and Heidrich, W. 2002. Efficient rendering of spatial bi-directional reflectance distribution functions. In Proceedings of the Conference on Graphics Hardware. 79–88. Google ScholarDigital Library
    Müller, G., Bendels, G. H., and Klein, R. 2005. Rapid synchronous acquisition of geometry and BTF for cultural heritage artefacts. In Proceedings of the Symposium on Virtual Reality, Archaeology and Cultural Heritage. 13–20. Google ScholarDigital Library
    Müller, G., Meseth, J., Sattler, M., Sarlette, R., and Klein, R. 2004. Acquisition, synthesis and rendering of bidirectional texture functions. In Eurographics 2004, State of the Art Reports. 69–94.Google Scholar
    Ngan, A., Durand, F., and Matusik, W. 2005. Experimental analysis of BRDF models. In Proceedings of the Eurographics Symposium on Rendering. 117–126. Google ScholarDigital Library
    Nicodemus, F. E., Richmond, J. C., Hsia, J. J., Ginsberg, I. W., and Limperis, T. 1977. Geometric considerations and nomenclature for reflectance. Monograph 161, National Bureau of Standards (US).Google Scholar
    Parker, J. 1993. All About Cotton: A Fabric Dictionary & Swatchbook. Rain City Pub.Google Scholar
    Pellacini, F. and Lawrence, J. 2007. AppWand: editing measured materials using appearance-driven optimization. ACM Trans. Graph. 26, 3, 54. Google ScholarDigital Library
    Pont, S. C. and Koenderink, J. J. 2003. Split off-specular reflection and surface scattering from woven materials. Appl. Opt. 42, 1526–1533.Google ScholarCross Ref
    Sattler, M., Sarlette, R., and Klein, R. 2003. Efficient and realistic visualization of cloth. In Proceedings of the Eurographics Workshop on Rendering. 167–177. Google ScholarDigital Library
    Sirikasemlert, A. and Tao, X. 1999. Effects of fabric parameters on specular reflection of single-jersey knitted fabrics. Textile Res. J. 69, 9, 663–675.Google ScholarCross Ref
    Tao, X. and Sirikasemlert, A. 1999. A three-dimensional analysis of specular reflection from single-jersey knitted fabrics. Textile Res. J. 69, 1, 43–51.Google ScholarCross Ref
    Volevich, V. L., Kopylov, E. A., Khodulev, A. B., and Karpenko, O. A. 1997. An approach to cloth synthesis and visualization. In Proceedings of the GRAPHICON Conference.Google Scholar
    Wang, J., Zhao, S., Tong, X., Snyder, J., and Guo, B. 2008. Modeling anisotropic surface reflectance with example-based microfacet synthesis. ACM Trans. Graph. 27, 3, 41:1–41:9. Google ScholarDigital Library
    Welford, T. 1967. The Textiles Student’s Manual. Pitman, London.Google Scholar
    Westin, S. H., Arvo, J. R., and Torrance, K. E. 1992. Predicting reflectance functions from complex surfaces. In Proceedings of the SIGGRAPH Conference. 255–264. Google ScholarDigital Library
    Wu, H., Dorsey, J., and Rushmeier, H. 2011. A sparse parametric mixture model for BTF compression, editing and rendering. Comput. Graph. Forum 30, 2, 465–473.Google ScholarCross Ref
    Xu, Y.-Q., Chen, Y., Lin, S., Zhong, H., Wu, E., Guo, B., and Shum, H.-Y. 2001. Photorealistic rendering of knitwear using the Lumislice. In Proceedings of the SIGGRAPH Conference. 391–398. Google ScholarDigital Library
    Yasuda, T., Yokoi, S., ichiro Toriwaki, J., and Inagaki, K. 1992. A shading model for cloth objects. IEEE Comput. Graph. Appl. 12, 6, 15–24. Google ScholarDigital Library
    Zinke, A. and Weber, A. 2007. Light scattering from filaments. IEEE Trans. Vis. Comp. Graph. 13, 2, 342–356. Google ScholarDigital Library

ACM Digital Library Publication: