“SPCBPT: subspace-based probabilistic connections for bidirectional path tracing” by Su, Li and Wang

  • ©Fujia Su, Sheng Li, and Guoping Wang

Conference:


Type(s):


Title:

    SPCBPT: subspace-based probabilistic connections for bidirectional path tracing

Presenter(s)/Author(s):



Abstract:


    Bidirectional path tracing (BDPT) can be accelerated by selecting appropriate light sub-paths for connection. However, existing algorithms need to perform frequent distribution reconstruction and have expensive overhead. We present a novel approach, SPCBPT, for probabilistic connections that constructs the light selection distribution in sub-path space. Our approach bins the sub-paths into multiple subspaces and keeps the sub-paths in the same subspace of low discrepancy, wherein the light sub-paths can be selected by a subspace-based two-stage sampling method, i.e., first sampling the light subspace and then resampling the light sub-paths within this subspace. The subspace-based distribution is free of reconstruction and provides efficient light selection at a very low cost. We also propose a method that considers the Multiple Importance Sampling (MIS) term in the light selection and thus obtain an MIS-aware distribution that can minimize the upper bound of variance of the combined estimator. Prior methods typically omit this MIS weights term. We evaluate our algorithm using various benchmarks, and the results show that our approach has superior performance and can significantly reduce the noise compared with the state-of-the-art method.

References:


    1. B. Bitterli, C. Wyman, M. Pharr, P. Shirley, A. Lefohn, and W. Jarosz. 2020. Spatiotemporal reservoir resampling for real-time ray tracing with dynamic direct lighting. ACM Trans. Graph. (TOG) 39, 4 (07 2020), 148:1–17.Google ScholarDigital Library
    2. C. R. A. Chaitanya, L. Belcour, T. Hachisuka, S. Premoze, J. Pantaleoni, and D. Nowrouzezahrai. 2018. Matrix Bidirectional Path Tracing. In Eurographics Symposium on Rendering – Experimental Ideas & Implementations. The Eurographics Association, 23–32.Google Scholar
    3. T. Davidovič, J. Krivanek, M. Hašan, and P. Slusallek. 2014. Progressive Light Transport Simulation on the GPU. ACM Trans. Graph. (TOG) 33, 3 (05 2014), 29:1–19.Google ScholarDigital Library
    4. X. Deng, S. Jiao, B. Bitterli, and W. Jarosz. 2019. Photon surfaces for robust, unbiased volumetric density estimation. ACM Trans. Graph. (TOG) 38, 4 (07 2019), 46:1–12.Google ScholarDigital Library
    5. S. Diolatzis, A. Gruson, W. Jakob, D. Nowrouzezahrai, and G. Drettakis. 2020. Practical Product Path Guiding Using Linearly Transformed Cosines. Computer Graphics Forum 39, 4 (07 2020), 23–33.Google Scholar
    6. R. Douc, A. Guillin, J. M. Marin, and C. P. Robert. 2007. Minimum variance importance sampling via Population Monte Carlo. ESAIM: Probability and Statistics 11 (2007), 427–447. Google ScholarCross Ref
    7. I. Georgiev, J. Krivanek, T. Davidovivc, and P. Slusallek. 2012a. Light Transport Simulation with Vertex Connection and Merging. ACM Trans. Graph. (TOG) 31, 6 (11 2012), 192:1–192:10.Google ScholarDigital Library
    8. I. Georgiev, J. Krivanek, S. Popov, and P. Slusallek. 2012b. Importance Caching for Complex Illumination. Computer Graphics Forum 31, 2 (05 2012), 701–710.Google Scholar
    9. P. Grittmann, I. Georgiev, and P. Slusallek. 2021. Correlation-Aware Multiple Importance Sampling for Bidirectional Rendering Algorithms. Computer Graphics Forum 40, 2 (05 2021), 231–238.Google Scholar
    10. J. Guo, P. Bauszat, J. Bikker, and E. Eisemann. 2018. Primary sample space path guiding. In Eurographics Symposium on Rendering, Vol. 2018. The Eurographics Association, 73–82.Google Scholar
    11. T. Hachisuka and H. W. Jensen. 2009. Stochastic Progressive Photon Mapping. ACM Trans. Graph. (TOG) 28, 5 (12 2009), 141:1–8.Google ScholarDigital Library
    12. T. Hachisuka, J. Pantaleoni, and H. W. Jensen. 2012. A Path Space Extension for Robust Light Transport Simulation. ACM Trans. Graph. (TOG) 31, 6 (11 2012), 191:1–10.Google ScholarDigital Library
    13. M. Hašan and F. Pellacini. 2007. Matrix Row-Column Sampling for the Many-Light Problem. ACM Trans. Graph. (TOG) 26, 3 (08 2007), 26:1–10.Google ScholarDigital Library
    14. S. Herholz, O. Elek, J. Vorba, H. Lensch, and J. Krivanek. 2016. Product Importance Sampling for Light Transport Path Guiding. Computer Graphics Forum 35, 4 (06 2016), 67–77.Google Scholar
    15. W. Jakob and S. Marschner. 2012. Manifold Exploration: A Markov Chain Monte Carlo Technique for Rendering Scenes with Difficult Specular Transport. ACM Trans. Graph. (TOG) 31, 4 (07 2012), 58:1–13.Google ScholarDigital Library
    16. H. w. Jensen. 1996. Importance Driven Path Tracing Using the Photon Map. Eurographics Rendering Workshop (09 1996), 326–335.Google Scholar
    17. A. Keller. 1997. Instant radiosity. In Proceedings of the 24th annual conference on Computer graphics and interactive techniques. 49–56.Google ScholarDigital Library
    18. D. Kingma and J. Ba. 2014. Adam: A Method for Stochastic Optimization. International Conference on Learning Representations (12 2014).Google Scholar
    19. J. Krivanek, M. Hasan, A. Arbree, C. Dachsbacher, A. Keller, and B. Walter. 2014. Scalable Realistic Rendering with Many-Light Methods. Computer Graphics Forum 33, 1 (02 2014), 88–104.Google Scholar
    20. E. P. Lafortune and Y. D. Willems. 1993. Bi-Directional Path Tracing. In Proceedings of Compugraphics. 145–153.Google Scholar
    21. E. P. Lafortune and Y. D. Willems. 1999. A 5D Tree to Reduce the Variance of Monte Carlo Ray Tracing. In Rendering Techniques.Google Scholar
    22. Z. Lin, S. Li, X. Zeng, C. Zhang, J. Jia, G. Wang, and D. Manocha. 2020. CPPM: chi-squared progressive photon mapping. ACM Trans. Graph. (TOG) 39, 6 (11 2020), 240:1–12.Google ScholarDigital Library
    23. T. Müller, B. Mcwilliams, F. Rousselle, M. Gross, and J. Novák. 2019. Neural Importance Sampling. ACM Trans. Graph. (TOG) 38, 5 (10 2019), 145:1–19.Google ScholarDigital Library
    24. T. Müller, F. Rousselle, A. Keller, and J. Novák. 2020. Neural Control Variates. ACM Trans. Graph. (TOG) 39, 6 (11 2020), 243:1–19.Google ScholarDigital Library
    25. T. Müller, M. Gross, and J. Novák. 2017. Practical Path Guiding for Efficient LightTransport Simulation. Computer Graphics Forum 36, 4 (07 2017), 91–100.Google Scholar
    26. K. Nabata, K. Iwasaki, and Y. Dobashi. 2020a. Resampling-aware Weighting Functions for Bidirectional Path Tracing Using Multiple Light Sub-Paths. ACM Trans. Graph. (TOG) 39, 2 (03 2020), 15:1–11.Google ScholarDigital Library
    27. K. Nabata, K. Iwasaki, and Y. Dobashi. 2020b. Two-stage Resampling for Bidirectional Path Tracing with Multiple Light Sub-paths. Computer Graphics Forum 39, 7 (10 2020), 219–230.Google Scholar
    28. J. Ou and F. Pellacini. 2011. LightSlice: matrix slice sampling for the many-lights problem. ACM Trans. Graph. (TOG) 30, 6 (12 2011), 179:1–8.Google ScholarDigital Library
    29. A. Pajot, L. Barthe, M. Paulin, and P. Poulin. 2011. Combinatorial bidirectional path-tracing for efficient hybrid CPU/GPU rendering. Computer Graphics Forum 30, 2 (2011), 315–324.Google ScholarCross Ref
    30. S. G. Parker, J. Bigler, A. Dietrich, H. Friedrich, J. Hoberock, D. Luebke, D. McAllister, M. McGuire, K. Morley, A. Robison, et al. 2010. Optix: a general purpose ray tracing engine. ACM Trans. Graph. (TOG) 29, 4 (07 2010), 66:1–13.Google ScholarDigital Library
    31. S. Popov, R. Ramamoorthi, F. Durand, and G. Drettakis. 2015. Probabilistic Connections for Bidirectional Path Tracing. Computer Graphics Forum 34, 4 (07 2015), 75–86.Google Scholar
    32. A. Rath, P. Grittmann, Sebastian H., P. Vévoda, P. Slusallek, and J. Křivánek. 2020. Variance-Aware Path Guiding. ACM Trans. Graph. (TOG) 39, 4 (07 2020), 151:1–12.Google ScholarDigital Library
    33. M. Sbert, V. Havran, and L. Szirmay-Kalos. 2016. Variance Analysis of Multi-sample and One-sample Multiple Importance Sampling. Computer Graphics Forum 35, 7 (10 2016), 451–460.Google Scholar
    34. J. Talbot, D. Cline, and P. Egbert. 2005. Importance Resampling for Global Illumination. Eurographics Symposium on Rendering, 139–146.Google Scholar
    35. Y. Tokuyoshi and T. Harada. 2019. Hierarchical russian roulette for vertex connections. ACM Trans. Graph. (TOG) 38, 4 (07 2019), 36:1–12.Google ScholarDigital Library
    36. D. V. Antwerpen. 2011. Recursive MIS Computation for Streaming BDPT on the GPU. Technical Report.Google Scholar
    37. E. Veach and L. Guibas. 1995a. Bidirectional estimators for light transport. In Photorealistic Rendering Techniques. 145–167.Google Scholar
    38. E. Veach and L. Guibas. 1995b. Optimally Combining Sampling Techniques for Monte Carlo Rendering. In Proceedings of the 22nd Annual Conference on Computer Graphics and Interactive Techniques. 419–428.Google Scholar
    39. E. Veach and L. J. Guibas. 1997. Metropolis light transport. In Proceedings of the 24th annual conference on Computer graphics and interactive techniques. 65–76.Google Scholar
    40. P. Vévoda, I. Kondapaneni, and J. Křivánek. 2018. Bayesian Online Regression for Adaptive Direct Illumination Sampling. ACM Trans. Graph. (TOG) 37, 4 (07 2018), 125:1–12.Google ScholarDigital Library
    41. J. Vorba, J. Hanika, S. Herholz, T. Müller, J. Křivánek, and A. Keller. 2019. Path Guiding in Production. In ACM SIGGRAPH 2019 Courses. 18:41–45.Google Scholar
    42. J. Vorba, O. Karlík, M. Šik, T. Ritschel, and J. Krivanek. 2014. On-line Learning of Parametric Mixture Models for Light Transport Simulation. ACM Trans. Graph. (TOG) 33, 4 (07 2014), 101:1–11.Google ScholarDigital Library
    43. B. Walter, A. Arbree, K. Bala, and D. Greenberg. 2006. Multidimensional Lightcuts. ACM Trans. Graph. (TOG) 25 (07 2006), 1081–1088.Google Scholar
    44. B. Walter, S. Fernandez, A. Arbree, K. Bala, M. Donikian, and D. Greenberg. 2005. Lightcuts: a scalable approach to illumination. ACM Trans. Graph. (TOG) 24, 3 (07 2005), 1098–1107.Google ScholarDigital Library
    45. B. Walter, P. Khungurn, and K. Bala. 2012. Bidirectional lightcuts. ACM Trans. Graph. (TOG) 31, 4 (07 2012), 59:1–11.Google ScholarDigital Library
    46. Y. Wang, Y. Wu, T. Li, and Y. Chuang. 2021. Learning to Cluster for Rendering with Many Lights. ACM Trans. Graph. (TOG) 40, 6 (12 2021), 277:1–10.Google ScholarDigital Library
    47. Y. Wu and Y. Chuang. 2013. VisibilityCluster: Average Directional Visibility for Many-Light Rendering. IEEE transactions on visualization and computer graphics 19 (09 2013), 1566–1578.Google Scholar


ACM Digital Library Publication:



Overview Page: