“Spatiotemporal atlas parameterization for evolving meshes” by Prada, Kazhdan, Chuang, Collet and Hoppe

  • ©Fabian Prada, Michael Kazhdan, Ming Chuang, Alvaro Collet, and Hugues Hoppe




    Spatiotemporal atlas parameterization for evolving meshes

Session/Category Title:   Being Discrete About Geometry Processing




    We convert a sequence of unstructured textured meshes into a mesh with incrementally changing connectivity and atlas parameterization. Like prior work on surface tracking, we seek temporally coherent mesh connectivity to enable efficient representation of surface geometry and texture. Like recent work on evolving meshes, we pursue local remeshing to permit tracking over long sequences containing significant deformations or topological changes. Our main contribution is to show that both goals are realizable within a common framework that simultaneously evolves both the set of mesh triangles and the parametric map. Sparsifying the remeshing operations allows the formation of large spatiotemporal texture charts. These charts are packed as prisms into a 3D atlas for a texture video. Reducing tracking drift using mesh-based optical flow helps improve compression of the resulting video stream.


    1. Alexander I Bobenko and Peter Schröder. 2005. Discrete Willmore flow. Symposium on Geometry Processing (2005).Google ScholarDigital Library
    2. Morten Bojsen-Hansen, Hao Li, and Chris Wojtan. 2012. Tracking surfaces with evolving topology. ACM Trans. Graph. 31, 4, Article 53 (July 2012). Google ScholarDigital Library
    3. Chris Budd, Peng Huang, Martin Klaudiny, and Adrian Hilton. 2013. Global non-rigid alignment of surface sequences. Int. J. Comput. Vision 102 (2013). Google ScholarDigital Library
    4. Alvaro Collet, Ming Chuang, Pat Sweeney, Don Gillett, Dennis Evseev, David Calabrese, Hugues Hoppe, Adam Kirk, and Steve Sullivan. 2015. High-quality streamable free-viewpoint video. ACM Trans. Graph. 34 (2015). Google ScholarDigital Library
    5. Mingsong Dou, Sameh Khamis, Yury Degtyarev, Philip Davidson, Sean Ryan Fanello, Adarsh Kowdle, Sergio Orts Escolano, Christoph Rhemann, David Kim, Jonathan Taylor, Pushmeet Kohli, Vladimir Tankovich, and Shahram Izadi. 2016. Fusion4D: Real-time performance capture of challenging scenes. ACM Trans. Graph. 35, 4, Article 114 (July 2016). Google ScholarDigital Library
    6. Alec Jacobson, Daniele Panozzo, and others. 2016. libigl: A simple C++ geometry processing library. http://libigl.github.io/libigl/. (2016).Google Scholar
    7. Vladimir G. Kim, Yaron Lipman, and Thomas Funkhouser. 2011. Blended intrinsic maps. ACM Trans. Graph., Article 79 (2011). Google ScholarDigital Library
    8. Bruno Lévy, Sylvain Petitjean, Nicolas Ray, and Jérome Maillot. 2002. Least squares conformal maps for automatic texture atlas generation. In Proc. ACM SIGGRAPH. Google ScholarDigital Library
    9. Hao Li, Bart Adams, Leonidas J. Guibas, and Mark Pauly. 2009. Robust single-view geometry and motion reconstruction. ACM Trans. Graph. 28 (2009). Google ScholarDigital Library
    10. Hao Li, Linjie Luo, Daniel Vlasic, Pieter Peers, Jovan Popović, Mark Pauly, and Szymon Rusinkiewicz. 2012. Temporally coherent completion of dynamic shapes. ACM Trans. Graph. 31, 1, Article 2 (Feb. 2012). Google ScholarDigital Library
    11. Hao Li, Robert W. Sumner, and Mark Pauly. 2008. Global correspondence optimization for non-rigid registration of depth scans. In Symposium on Geometry Processing. 10. Google ScholarCross Ref
    12. Haggai Maron, Nadav Dym, Itay Kezurer, Shahar Kovalsky, and Yaron Lipman. 2016. Point registration via efficient convex relaxation. ACM Trans. Graph. 35, 4, Article 73 (July 2016). Google ScholarDigital Library
    13. Microsoft. 2011. UVAtlas. https://github.com/Microsoft/UVAtlas. (2011).Google Scholar
    14. Richard A. Newcombe, Dieter Fox, and Steven M. Seitz. 2015. DynamicFusion: Reconstruction and tracking of non-rigid scenes in real-time. In IEEE CVPR.Google Scholar
    15. Fabián Prada, Misha Kazhdan, Ming Chuang, Alvaro Collet, and Hugues Hoppe. 2016. Motion graphs for unstructured textured meshes. ACM Trans. Graph. 35, 4, Article 108 (July 2016). Google ScholarDigital Library
    16. Pedro Sander, John Snyder, Steven Gortler, and Hugues Hoppe. 2001. Texture mapping progressive meshes. In Proc. ACM SIGGRAPH. 409–416. Google ScholarDigital Library
    17. Alla Shefler, Emil Praun, and Kenneth Rose. 2006. Mesh parameterization methods and their applications. Foundations and Trends in Computer Graphics and Vision 2, 2 (2006).Google Scholar
    18. Justin Solomon, Gabriel Peyré, Vladimir G. Kim, and Suvrit Sra. 2016. Entropic metric alignment for correspondence problems. ACM Trans. Graph. 35, 4, Article 72 (July 2016), 13 pages.Google ScholarDigital Library
    19. Olga Sorkine and Marc Alexa. 2007. As-rigid-as-possible surface modeling. In Symp. on Geometry Processing.Google Scholar
    20. Jonathan Starck and Adrian Hilton. 2007. Surface capture for performance-based animation. IEEE Computer Graphics and Application 27 (2007). Google ScholarDigital Library
    21. Robert W. Sumner, Johannes Schmid, and Mark Pauly. 2007. Embedded deformation for shape manipulation. ACM Trans. Graph. 26 (2007). Google ScholarDigital Library
    22. Vitaly Surazhsky, Tatiana Surazhsky, Danil Kirsanov, Steven J. Gortler, and Hugues Hoppe. 2005. Fast exact and approximate geodesics on meshes. ACM Trans. Graph. 24, 3 (July 2005). Google ScholarDigital Library
    23. Gabriel Taubin. 1995. A signal processing approach to fair surface design. In Proc. ACM SIGGRAPH. 8. Google ScholarDigital Library
    24. Art Tevs, Alexander Berner, Michael Wand, Ivo Ihrke, Martin Bokeloh, Jens Kerber, and Hans-Peter Seidel. 2012. Animation cartography: Intrinsic reconstruction of shape and motion. ACM Trans. Graph. 31, 2 (2012). Google ScholarDigital Library
    25. Chris Wojtan, Nils Thürey, Markus Gross, and Greg Turk. 2009. Deforming meshes that split and merge. ACM Trans. Graph. 28, 3, Article 76 (July 2009). Google ScholarDigital Library
    26. Faxin Yu, Zheming Lu, Hao Luo, and Pinghui Wang. 2011. Three-dimensional model analysis and processing. Springer Science & Business Media.Google Scholar
    27. C Lawrence Zitnick, Sing Bing Kang, Matthew Uyttendaele, Simon Winder, and Richard Szeliski. 2004. High-quality video view interpolation using a layered representation. ACM Trans. Graph. 23 (2004).Google Scholar
    28. Michael Zollhöfer, Matthias Nießner, Shahram Izadi, Christoph Rehmann, Christopher Zach, Matthew Fisher, Chenglei Wu, Andrew Fitzgibbon, Charles Loop, Christian Theobalt, and Marc Stamminger. 2014. Real-time non-rigid reconstruction using an RGB-D camera. ACM Trans. Graph. 33 (2014). Google ScholarDigital Library

ACM Digital Library Publication:

Overview Page: