“Space-Time Tomography for Continuously Deforming Objects” by Zang, Idoughi, Tao, Lubineau, Wonka, et al. …

  • ©Guangming Zang, Ramzi Idoughi, Ran Tao, Gilles Lubineau, Peter Wonka, and Wolfgang Heidrich



Entry Number: 100


    Space-Time Tomography for Continuously Deforming Objects

Session/Category Title:   3D Capture




    X-ray computed tomography (CT) is a valuable tool for analyzing objects with interesting internal structure or complex geometries that are not accessible with optical means. Unfortunately, tomographic reconstruction of complex shapes requires a multitude (often hundreds or thousands) of projections from different viewpoints. Such a large number of projections can only be acquired in a time-sequential fashion. This significantly limits the ability to use x-ray tomography for either objects that undergo uncontrolled shape change at the time scale of a scan, or else for analyzing dynamic phenomena, where the motion itself is under investigation.In this work, we present a non-parametric space-time tomographic method for tackling such dynamic settings. Through a combination of a new CT image acquisition strategy, a space-time tomographic image formation model, and an alternating, multi-scale solver, we achieve a general approach that can be used to analyze a wide range of dynamic phenomena. We demonstrate our method with extensive experiments on both real and simulated data.


    1. Mohamed Aly, Guangming Zang, Wolfgang Heidrich, and Peter Wonka. 2016. TRex: A Tomography Reconstruction Proximal Framework for Robust Sparse View X-Ray Applications. arXiv preprint arXiv:1606.03601 (2016).Google Scholar
    2. Anders H Andersen and Avinash C Kak. 1984. Simultaneous algebraic reconstruction technique (SART): a superior implementation of the ART algorithm. Ultrasonic Imaging 6, 1 (1984), 81-94.Google ScholarCross Ref
    3. Bradley Atcheson, Ivo Ihrke, Wolfgang Heidrich, Art Tevs, Derek Bradley, Marcus Magnor, and Hans-Peter Seidel. 2008. Time-resolved 3D capture of non-stationary gas flows. ACM Trans. Graph. 27, 5 (2008), 132. Google ScholarDigital Library
    4. Brian K Bay, Tait S Smith, David P Fyhrie, and Malik Saad. 1999. Digital volume correlation: three-dimensional strain mapping using X-ray tomography. Exp. Mech. 39, 3 (1999), 217–226.Google ScholarCross Ref
    5. Derek Bradley, Tiberiu Popa, Alla Sheffer, Wolfgang Heidrich, and Tamy Boubekeur. 2008. Markerless garment capture. 27, 3 (2008), 99. Google ScholarDigital Library
    6. Martin Burger, Hendrik Dirks, and Carola-Bibiane Schonlieb. 2018. A variational model for joint motion estimation and image reconstruction. SIAM Journal on Imaging Sciences 11, 1 (2018), 94–128.Google ScholarCross Ref
    7. Antonin Chambolle and Thomas Pock. 2011. A first-order primal-dual algorithm for convex problems with applications to imaging. J. Math. Imaging and Vision 40, 1 (2011), 120–145. Google ScholarDigital Library
    8. Guang-Hong Chen, Pascal Thériault-Lauzier, Jie Tang, Brian Nett, Shuai Leng, Joseph Zambelli, Zhihua Qi, Nicholas Bevins, Amish Raval, Scott Reeder, et al. 2012. Time-resolved interventional cardiac C-arm cone-beam CT: An application of the PICCS algorithm. IEEE Trans. Med. Img. 31, 4 (2012), 907–923.Google ScholarCross Ref
    9. W Chlewicki, C Badea, and N Pallikarakis. 2001. Cone based 3D reconstruction: a FDK-SART comparison for limited number of projections. Proceedings of MEDICON 2001 (2001).Google Scholar
    10. Edilson De Aguiar, Carsten Stoll, Christian Theobalt, Naveed Ahmed, Hans-Peter Seidel, and Sebastian Thrun. 2008. Performance capture from sparse multi-view video. 27, 3 (2008), 98. Google ScholarDigital Library
    11. Laurent Desbat, Sbastien Roux, and Pierre Grangeat. 2007. Compensation of some time dependent deformations in tomography. IEEE Trans. Med. Img. 26, 2 (2007), 261–269.Google ScholarCross Ref
    12. Mingsong Dou, Sameh Khamis, Yury Degtyarev, Philip Davidson, Sean Ryan Fanello, Adarsh Kowdle, Sergio Orts Escolano, Christoph Rhemann, David Kim, Jonathan Taylor, et al. 2016. Fusion4D: Real-time performance capture of challenging scenes. ACM Trans. Graph. 35, 4 (2016), 114. Google ScholarDigital Library
    13. Gerrit E Eisinga, Fulvio Scarano, Bernhard Wieneke, and Bas W van Oudheusden. 2006. Tomographic particle image velocimetry. Exp. Fluids 41, 6 (2006), 933–947.Google ScholarCross Ref
    14. LA Feldkamp, LC Davis, and JW Kress. 1984. Practical cone-beam algorithm. JOSA A 1, 6 (1984), 612–619.Google ScholarCross Ref
    15. Pascal Getreuer. 2012. Rudin-Osher-Fatemi total variation denoising using split Bregman. Image Processing On Line 2 (2012), 74–95.Google ScholarCross Ref
    16. James Gregson, Ivo Ihrke, Nils Thuerey, and Wolfgang Heidrich. 2014. From capture to simulation: connecting forward and inverse problems in fluids. ACM Trans. Graph. 33, 4 (2014), 139. Google ScholarDigital Library
    17. James Gregson, Michael Krimerman, Matthias B Hullin, and Wolfgang Heidrich. 2012. Stochastic tomography and its applications in 3D imaging of mixing fluids. ACM Trans. Graph. 31, 4 (2012), 52–1. Google ScholarDigital Library
    18. Samuel W Hasinoff and Kiriakos N Kutulakos. 2007. Photo-consistent reconstruction of semitransparent scenes by density-sheet decomposition. IEEE Trans. PAMI 29, 5 (2007), 870–885. Google ScholarDigital Library
    19. Gabor T. Herman. 2009. Fundamentals of computerized tomography: image reconstruction from projections. Google ScholarDigital Library
    20. François Hild, Hugo Leclerc, and Stéphane Roux. 2014. Performing DVC at the Voxel Scale. In Advancement of Optical Methods in Experimental Mechanics, Volume 3. 209–215.Google ScholarCross Ref
    21. Berthold KP Horn and Brian G Schunck. 1981. Determining optical flow. Artificial Intelligence 17, 1–3 (1981), 185–203. Google ScholarDigital Library
    22. Peter J Huber. 2011. Robust statistics. In Int. Encyclopedia of Statistical Science. 1248–1251.Google Scholar
    23. Ivo Ihrke and Marcus Magnor. 2004. Image-based tomographic reconstruction of flames. In Proc. SCA. 365–373. Google ScholarDigital Library
    24. Takashi Ijiri, Shin Yoshizawa, Hideo Yokota, and Takeo Igarashi. 2014. Flower modeling via X-ray computed tomography. ACM Trans. Graph. 33, 4 (2014), 48. Google ScholarDigital Library
    25. Matthias Innmann, Michael Zollhöfer, Matthias Nießner, Christian Theobalt, and Marc Stamminger. 2016. VolumeDeform: Real-time volumetric non-rigid reconstruction. In Proc. ECCV. Springer, 362–379.Google Scholar
    26. Oszkár Józsa, Attila Böres, and Csaba Benedek. 2013. Towards 4D virtual city reconstruction from Lidar point cloud sequences. ISPRS.Google Scholar
    27. Avinash C Kak and Malcolm Slaney. 2001. Principles of computerized tomographic imaging. SIAM. Google ScholarDigital Library
    28. Sakiho Kato, Tomofumi Narita, Chika Tomiyama, Takashi Ijiri, and Hiroya Tanaka. 2017. 4D computed tomography measurement for growing plant animation. In SIGGRAPH ASIA 2017Posters. Google ScholarDigital Library
    29. ByungMoon Kim, Yingjie Liu, Ignacio Llamas, and Jaroslaw R Rossignac. 2005. Flowfixer: Using bfecc for fluid simulation. Technical Report. Georgia Institute of Technology.Google Scholar
    30. Joël Lachambre, Julien Réthoré, Arnaud Weck, and Jean-Yves Buffiere. 2015. Extraction of stress intensity factors for 3D small fatigue cracks using digital volume correlation and X-ray tomography. Int. J. Fatigue 71 (2015), 3–10.Google ScholarCross Ref
    31. Douglas Lanman, Gordon Wetzstein, Matthew Hirsch, Wolfgang Heidrich, and Ramesh Raskar. 2011. Polarization fields: dynamic light field display using multi-layer LCDs. ACM Trans. Graph. 30, 6 (2011), 186. Google ScholarDigital Library
    32. Hugo Leclerc, Stéphane Roux, and François Hild. 2015. Projection savings in CT-based digital volume correlation. Exp. Mech. 55, 1 (2015), 275–287.Google ScholarCross Ref
    33. Hao Li, Linjie Luo, Daniel Vlasic, Pieter Peers, Jovan Popović, Mark Pauly, and Szymon Rusinkiewicz. 2012. Temporally coherent completion of dynamic shapes. ACM Trans. Graph. 31, 1 (2012), 2. Google ScholarDigital Library
    34. Enric Meinhardt-Llopis, Javier Sánchez Pérez, and Daniel Kondermann. 2013. Horn-Schunck Optical Flow with a Multi-Scale Strategy. Image Processing On Line, 2013: 151–172, 2013. (2013).Google ScholarCross Ref
    35. Niloy J Mitra, Simon Flöry, Maks Ovsjanikov, Natasha Gelfand, Leonidas J Guibas, and Helmut Pottmann. 2007. Dynamic geometry registration. In Symposium on geometry processing. 173–182. Google ScholarDigital Library
    36. K Aditya Mohan, SV Venkatakrishnan, John W Gibbs, Emine Begum Gulsoy, Xianghui Xiao, Marc De Graef, Peter W Voorhees, and Charles A Bouman. 2015. TIMBER: A method for time-space reconstruction from interlaced views. 1, 2 (2015), 96–111.Google Scholar
    37. Thilo F Morgeneyer, Lukas Helfen, Hazem Mubarak, and François Hild. 2013. 3D digital volume correlation of synchrotron radiation laminography images of ductile crack initiation: an initial feasibility study. Exp. Mech. 53, 4 (2013), 543–556.Google ScholarCross Ref
    38. Cyril Mory, Vincent Auvray, Bo Zhang, Michael Grass, Dirk Schäfer, S James Chen, John D Carroll, Simon Rit, Françoise Peyrin, Philippe Douek, et al. 2014. Cardiac C-arm computed tomography using a 3D + time ROI reconstruction method with spatial and temporal regularization. Med. Phys. 41, 2 (2014).Google Scholar
    39. Cyril Mory, Bo Zhang, Vincent Auvray, Michael Grass, Dirk Schäfer, Françoise Peyrin, Simon Rit, Philippe Douek, and Loïc Boussel. 2012. ECG-gated C-arm computed tomography using L1 regularization. In Proc. EUSIPCO. 2728–2732.Google Scholar
    40. J Neggers, JPM Hoefnagels, MGD Geers, F Hild, and S Roux. 2015. Time-resolved integrated digital image correlation. Internat. J. Numer. Methods Engrg. 103, 3 (2015), 157–182.Google ScholarCross Ref
    41. Alex Reche-Martinez, Ignacio Martin, and George Drettakis. 2004. Volumetric reconstruction and interactive rendering of trees from photographs. ACM Trans. Graph. 23, 3 (2004), 720–727. Google ScholarDigital Library
    42. Stéphane Roux, François Hild, Philippe Viot, and Dominique Bernard. 2008. Three-dimensional image correlation from X-ray computed tomography of solid foam. Composites Part A: Applied science and manufacturing 39, 8 (2008), 1253–1265.Google Scholar
    43. Hubert Schreier, Jean-José Orteu, and Michael A Sutton. 2009. Image correlation for shape, motion and deformation measurements. Springer US.Google Scholar
    44. Emil Y Sidky and Xiaochuan Pan. 2008. Image reconstruction in circular cone-beam computed tomography by constrained, total-variation minimization. Physics in Medicine and Biology 53, 17 (2008), 4777.Google ScholarCross Ref
    45. Jan-Jakob Sonke, Lambert Zijp, Peter Remeijer, and Marcel van Herk. 2005. Respiratory correlated cone beam CT. Med. Phys. 32, 4 (2005), 1176–1186.Google ScholarCross Ref
    46. Wolfgang H Stuppy, Jessica A Maisano, Matthew W Colbert, Paula J Rudall, and Timothy B Rowe. 2003. Three-dimensional analysis of plant structure using high-resolution X-ray computed tomography. Trends in Plant Science 8, 1 (2003), 2–6.Google ScholarCross Ref
    47. Thibault Taillandier-Thomas, Stéphane Roux, and François Hild. 2016. Soft route to 4D tomography. Phys. Rev. Letters 117, 2 (2016), 025501.Google ScholarCross Ref
    48. Oliver Taubmann, Günter Lauritsch, Andreas Maier, Rebecca Fahrig, and Joachim Hornegger. 2015. Estimate, compensate, iterate: joint motion estimation and compensation in 4-D cardiac C-arm computed tomography. In Proc. Int. Conf. on Medical Image Computing and Computer-Assisted Intervention. 579–586.Google ScholarCross Ref
    49. Borislav Trifonov, Derek Bradley, and Wolfgang Heidrich. 2006. Tomographic reconstruction of transparent objects. In Proc. EGSR. Google ScholarDigital Library
    50. JG Van der Corput. 1935. Verteilungsfunktionen I, II. Nederl. Akad. Wetensch. Proc. 38 (1935).Google Scholar
    51. Eelco Verhulp, Bert van Rietbergen, and Rik Huiskes. 2004. A three-dimensional digital image correlation technique for strain measurements in micro structures. J. Biomechanics 37, 9 (2004), 1313–1320.Google ScholarCross Ref
    52. Michael Wand, Bart Adams, Maksim Ovsjanikov, Alexander Berner, Martin Bokeloh, Philipp Jenke, Leonidas Guibas, Hans-Peter Seidel, and Andreas Schilling. 2009. Efficient reconstruction of nonrigid shape and motion from real-time 3D scanner data. ACM Trans. Graph. 28, 2 (2009), 15. Google ScholarDigital Library
    53. Gordon Wetzstein, Douglas Lanman, Wolfgang Heidrich, and Ramesh Raskar. 2011. Layered 3D: tomographic image synthesis for attenuation-based light field and high dynamic range displays. ACM Trans. Graph. 30, 4 (2011), 95. Google ScholarDigital Library
    54. Jinhui Xiong, Ramzi Idoughi, Andres A Aguirre-Pablo, Abdulrahman B Aljedaani, Xiong Dun, Qiang Fu, Sigurdur T. Thoroddsen, and Wolfgang Heidrich. 2017. Rainbow particle imaging velocimetry for dense 3D fluid velocity imaging. ACM Trans. Graph. 36, 4 (2017), 36. Google ScholarDigital Library
    55. Shuang Zhao, Wenzel Jakob, Steve Marschner, and Kavita Bala. 2011. Building volumetric appearance models of fabric using micro CT imaging. ACM Trans. Graph. 30, 4 (2011), 44. Google ScholarDigital Library
    56. Qian Zheng, Xiaochen Fan, Minglun Gong, Andrei Sharf, Oliver Deussen, and Hui Huang. 2017. 4D Reconstruction of Blooming Flowers. CGF 36, 6 (2017), 405–417. Google ScholarDigital Library

ACM Digital Library Publication:

Overview Page: