“Space-time editing of elastic motion through material optimization and reduction” by Li, Huang, Goes, Jin, Bao, et al. …

  • ©Siwang Li, Jin Huang, Fernando de Goes, Xiaogang Jin, Hujun Bao, and Mathieu Desbrun




    Space-time editing of elastic motion through material optimization and reduction

Session/Category Title:   Subspace & Spacetime




    We present a novel method for elastic animation editing with space-time constraints. In a sharp departure from previous approaches, we not only optimize control forces added to a linearized dynamic model, but also optimize material properties to better match user constraints and provide plausible and consistent motion. Our approach achieves efficiency and scalability by performing all computations in a reduced rotation-strain (RS) space constructed with both cubature and geometric reduction, leading to two orders of magnitude improvement over the original RS method. We demonstrate the utility and versatility of our method in various applications, including motion editing, pose interpolation, and estimation of material parameters from existing animation sequences.


    1. An, S. S., Kim, T., and James, D. L. 2008. Optimizing cubature for efficient integration of subspace deformations. ACM Transactions on Graphics 27, 5, 165:1–165:10. Google ScholarDigital Library
    2. Barbič, J., and James, D. L. 2005. Real-time subspace integration for St. Venant-Kirchhoff deformable models. ACM Transactions on Graphics 24, 3, 982–990. Google ScholarDigital Library
    3. Barbič, J., and Popović, J. 2008. Real-time control of physically based simulations using gentle forces. ACM Transactions Graphics 27, 5, 163:1–163:10. Google ScholarDigital Library
    4. Barbič, J., da Silva, M., and Popović, J. 2009. Deformable object animation using reduced optimal control. ACM Transactions on Graphics 28, 3, 53:1–53:9. Google ScholarDigital Library
    5. Barbič, J., Sin, F., and Grinspun, E. 2012. Interactive editing of deformable simulations. ACM Transactions on Graphics 31, 4, 70:1–70:8. Google ScholarDigital Library
    6. Bickel, B., Bächer, M., Otaduy, M. A., Matusik, W., Pfister, H., and Gross, M. 2009. Capture and modeling of non-linear heterogeneous soft tissue. ACM Transactions on Graphics 28, 3, 89:1–89:9. Google ScholarDigital Library
    7. Bickel, B., Bächer, M., Otaduy, M. A., Lee, H. R., Pfister, H., Gross, M., and Matusik, W. 2010. Design and fabrication of materials with desired deformation behavior. ACM Transactions on Graphics 29, 4, 63:1–63:10. Google ScholarDigital Library
    8. Bochkanov, S. Alglib (www.alglib.net). Google ScholarDigital Library
    9. Byrd, R. H., Lu, P., and Nocedal, J. 1995. A limited memory algorithm for bound constrained optimization. SIAM J. Sci. Comput. 16, 5, 1190–1208. Google ScholarDigital Library
    10. Chen, Y., Davis, T. A., Hager, W. W., and Rajamanickam, S. 2008. Algorithm 887: Cholmod, supernodal sparse cholesky factorization and update/downdate. ACM Trans. Math. Softw. 35, 3, 22:1–22:14. Google ScholarDigital Library
    11. Choi, M. G., and Ko, H.-S. 2005. Modal warping: Real-time simulation of large rotational deformation and manipulation. IEEE Transactions on Visualization and Computer Graphics 11, 1, 91–101. Google ScholarDigital Library
    12. Coros, S., Martin, S., Thomaszewski, B., Schumacher, C., Sumner, R., and Gross, M. 2012. Deformable objects alive! ACM Transactions on Graphics 31, 4 (July), 69:1–69:9. Google ScholarDigital Library
    13. Fang, A. C., and Pollard, N. S. 2003. Efficient synthesis of physically valid human motion. ACM Transactions on Graphics 22, 3, 417–426. Google ScholarDigital Library
    14. Gleicher, M. 1997. Motion editing with spacetime constraints. In Symposium on Interactive 3D graphics, 139–149. Google ScholarDigital Library
    15. Grassia, F. S. 1998. Practical parameterization of rotations using the exponential map. J. Graph. Tools 3, 3 (Mar.), 29–48. Google ScholarDigital Library
    16. Hauser, K. K., Shen, C., and OBrien, J. F. 2003. Interactive deformation using modal analysis with constraints. In Proceedings of Graphics Interface, vol. 3, 16–17.Google Scholar
    17. Hildebrandt, K., Schulz, C., von Tycowicz, C., and Polthier, K. 2012. Interactive spacetime control of deformable objects. ACM Transactions on Graphics 31, 4, 71:1–71:8. Google ScholarDigital Library
    18. Huang, J., Tong, Y., Zhou, K., Bao, H., and Desbrun, M. 2011. Interactive shape interpolation through controllable dynamic deformation. IEEE Transactions on Visualization and Computer Graphics 17, 7, 983–992. Google ScholarDigital Library
    19. Jeon, H., and Choi, M.-H. 2007. Interactive motion control of deformable objects using localized optimal control. In Proceedings of ICRA, 2582–2587.Google Scholar
    20. Kim, Y., Machiraju, R., and Thompson, D. 2006. Path-based control of smoke simulations. In Symposium on Computer Animation, 33–42. Google ScholarDigital Library
    21. Li, S., Huang, J., Desbrun, M., and Jin, X. 2013. Interactive elastic motion editing through spacetime position constraints. Computer Animation and Virtual Worlds 24, 3–4, 409–417.Google ScholarCross Ref
    22. Martin, S., Thomaszewski, B., Grinspun, E., and Gross, M. 2011. Example-based elastic materials. ACM Transactions on Graphics 30, 4, 72:1–72:8. Google ScholarDigital Library
    23. Nielsen, M. B., and Bridson, R. 2011. Guide shapes for high resolution naturalistic liquid simulation. ACM Transactions on Graphics 30, 4, 83:1–83:8. Google ScholarDigital Library
    24. Pentland, A., and Williams, J. 1989. Good vibrations: modal dynamics for graphics and animation. Proceedings of ACM SIGGRAPH 23, 3, 207–214. Google ScholarDigital Library
    25. Popovic, J., Seitz, S., Erdmann, M., Popovic, Z., and Witkin, A. 2000. Interactive manipulation of rigid body simulations. In Proceedings of ACM SIGGRAPH, 209–218. Google ScholarDigital Library
    26. Safonova, A., Hodgins, J. K., and Pollard, N. S. 2004. Synthesizing physically realistic human motion in low-dimensional, behavior-specific spaces. In Proceedings of ACM SIGGRAPH, 514–521. Google ScholarDigital Library
    27. Stanton, M., Sheng, Y., Wicke, M., Perazzi, F., Yuen, A., Narasimhan, S., and Treuille, A. 2013. Non-polynomial galerkin projection on deforming meshes. ACM Transactions on Graphics 32, 4, 86:1–86:14. Google ScholarDigital Library
    28. Treuille, A., McNamara, A., Popović, Z., and Stam, J. 2003. Keyframe control of smoke simulations. In Proceedings of ACM SIGGRAPH, 716–723. Google ScholarDigital Library
    29. Twigg, C. D., and James, D. L. 2007. Many-worlds browsing for control of multibody dynamics. ACM Transactions on Graphics 26, 3, 14. Google ScholarDigital Library
    30. von Tycowicz, C., Schulz, C., Seidel, H.-P., and Hildebrandt, K. 2013. An efficient construction of reduced deformable objects. ACM Transactions on Graphics 32, 6, 213:1–213:10. Google ScholarDigital Library
    31. Witkin, A., and Kass, M. 1988. Spacetime constraints. In Proceedings of ACM SIGGRAPH, 159–168. Google ScholarDigital Library

ACM Digital Library Publication:

Overview Page: