“Skinning mesh animations” by James and Twigg

  • ©Doug L. James and Christopher D. Twigg

Conference:


Type:


Title:

    Skinning mesh animations

Presenter(s)/Author(s):



Abstract:


    We extend approaches for skinning characters to the general setting of skinning deformable mesh animations. We provide an automatic algorithm for generating progressive skinning approximations, that is particularly efficient for pseudo-articulated motions. Our contributions include the use of nonparametric mean shift clustering of high-dimensional mesh rotation sequences to automatically identify statistically relevant bones, and robust least squares methods to determine bone transformations, bone-vertex influence sets, and vertex weight values. We use a low-rank data reduction model defined in the undeformed mesh configuration to provide progressive convergence with a fixed number of bones. We show that the resulting skinned animations enable efficient hardware rendering, rest pose editing, and deformable collision detection. Finally, we present numerous examples where skins were automatically generated using a single set of parameter values.

References:


    1. Alexa, M., and Müller, W. 2000. Representing Animations by Principal Components. Computer Graphics Forum 19, 3 (Aug.), 411–418.Google ScholarCross Ref
    2. Allen, B., Curless, B., and Popović, Z. 2002. Articulated Body Deformation From Range Scan Data. ACM Transactions on Graphics 21, 3 (July), 612–619. Google ScholarDigital Library
    3. BriceñO, H. M., Sander, P. V., McMillan, L., Gortler, S., and Hoppe, H. 2003. Geometry Videos: A New Representation for 3D Animations. In SCA ’03: Proceedings of the 2003 ACM SIGGRAPH/Eurographics Symposium on Computer Animation, Eurographics Association, 136–146. Google ScholarDigital Library
    4. Buss, S. R., and Fillmore, J. P. 2001. Spherical Averages and Applications to Spherical Splines and Interpolation. ACM Transactions on Graphics 20, 2 (Apr.), 95–126. Google ScholarDigital Library
    5. Cheng, Y. 1995. Mean Shift, Mode Seeking, and Clustering. IEEE Trans. Pattern Anal. Mach. Intell. 17, 8, 790–799. Google ScholarDigital Library
    6. Comaniciu, D., and Meer, P. 2002. Mean Shift: A Robust Approach Toward Feature Space Analysis. IEEE Trans. Pattern Anal. Mach. Intell. 24, 5, 603–619. Google ScholarDigital Library
    7. Etzmuss, O., Keckeisen, M., and Strasser, W. 2003. A fast finite element solution for cloth modelling. In Proceedings of Pacific Graphics, 244–251. Google ScholarDigital Library
    8. Garland, M., and Heckbert, P. S. 1998. Simplifying Surfaces with Color and Texture using Quadric Error Metrics. In IEEE Visualization ’98, 263–270. Google ScholarDigital Library
    9. Georgescu, B., Shimshoni, I., and Meer, P. 2003. Mean Shift Based Clustering in High Dimensions: A Texture Classification Example. In Proceedings of the Ninth IEEE International Conference on Computer Vision (ICCV 2003). Adaptive mean shift code available at http://www.caip.rutgers.edu/riul/research/code/AMS. Google ScholarDigital Library
    10. Golub, G. H., and Loan, C. F. V. 1996. Matrix Computations, third ed. Johns Hopkins University Press, Baltimore. Google ScholarDigital Library
    11. Gupta, S., Sengupta, K., and Kassim, A. A. 2002. Compression of dynamic 3D geometry data using iterative closest point algorithm. Comput. Vis. Image Underst. 87, 1-3, 116–130. Google ScholarDigital Library
    12. Guskov, I., and Khodakovsky, A. 2004. Wavelet Compression of Parametrically Coherent Mesh Sequences. In SCA ’04: Proceedings of the 2004 ACM SIGGRAPH/Eurographics Symposium on Computer Animation, ACM Press, 183–192. Google ScholarDigital Library
    13. Hakura, Z. S., Lengyel, J. E., and Snyder, J. M. 2000. Parameterized Animation Compression. In Rendering Techniques 2000: 11th Eurographics Workshop on Rendering, 101–112. Google ScholarDigital Library
    14. Ibarria, L., and Rossignac, J. 2003. Dynapack: Space-Time compression of the 3D animations of triangle meshes with fixed connectivity. In SCA ’03: Proceedings of the 2003 ACM SIGGRAPH/Eurographics Symposium on Computer animation, Eurographics Association, 126–135. Google ScholarDigital Library
    15. James, D. L., and Fatahalian, K. 2003. Precomputing Interactive Dynamic Deformable Scenes. ACM Transactions on Graphics 22, 3 (July), 879–887. Google ScholarDigital Library
    16. James, D. L., and Pai, D. K. 2004. BD-Tree: Output-Sensitive Collision Detection for Reduced Deformable Models. ACM Transactions on Graphics (SIGGRAPH 2004) 23, 3 (Aug.). Google ScholarDigital Library
    17. Jones, T. R., Durand, F., and Desbrun, M. 2003. Non-Iterative, Feature-Preserving Mesh Smoothing. ACM Transactions on Graphics 22, 3 (July), 943–949. Google ScholarDigital Library
    18. Karni, Z., and Gotsman, C. 2004. Compression of soft-body animation sequences. Computers & Graphics 28, 1, 25–34.Google ScholarCross Ref
    19. Kry, P. G., James, D. L., and Pai, D. K. 2002. EigenSkin: Real Time Large Deformation Character Skinning in Hardware. In ACM SIGGRAPH Symposium on Computer Animation, 153–160. Google ScholarDigital Library
    20. Lawson, C. L., and Hanson, R. J. 1974. Solving Least Square Problems. Prentice Hall, Englewood Cliffs, NJ.Google Scholar
    21. Lee, D. D., and Seung, H. S. 2000. Algorithms for non-negative matrix factorization. In NIPS, 556–562.Google Scholar
    22. Lengyel, J. E. 1999. Compression of Time-dependent Geometry. In SI3D ’99: Proceedings of the 1999 Symposium on Interactive 3D Graphics, ACM Press, 89–95. Google ScholarDigital Library
    23. Lewis, J. P., Cordner, M., and Fong, N. 2000. Pose Space Deformations: A Unified Approach to Shape Interpolation and Skeleton-Driven Deformation. In Proceedings of ACM SIGGRAPH 2000, Computer Graphics Proceedings, Annual Conference Series, 165–172. Google ScholarDigital Library
    24. Lindholm, E., Kilgard, M. J., and Moreton, H. 2001. A User-Programmable Vertex Engine. In Proceedings of ACM SIGGRAPH 2001, Computer Graphics Proceedings, Annual Conference Series, 149–158. Google ScholarDigital Library
    25. Moakher, M. 2002. Means and Averaging in the Group of Rotations. SIAM J. Matrix Anal. Appl. 24, 1–16. Google ScholarDigital Library
    26. Mohr, A., and Gleicher, M. 2003. Building Efficient, Accurate Character Skins From Examples. ACM Transactions on Graphics 22, 3 (July), 562–568. Google ScholarDigital Library
    27. Müller, M., and Gross, M. 2004. Interactive Virtual Materials. In Proceedings of Graphics Interface. Google ScholarDigital Library
    28. Shamir, A., Bajaj, C., and Pascucci, V. 2000. Multi-resolution dynamic meshes with arbitrary deformations. In Proc. of Visualization ’00, IEEE Computer Society Press, 423–430. Google ScholarDigital Library
    29. Shoemake, K., and Duff, T. 1992. Matrix Animation and Polar Decomposition. In Graphics Interface ’92, 258–264. Google ScholarDigital Library
    30. Sloan, P.-P. J., III, C. F. R., and Cohen, M. F. 2001. Shape by Example. In ACM Symp. on Interactive 3D Graphics, 135–144. Google ScholarDigital Library
    31. Sloan, P.-P., Kautz, J., and Snyder, J. 2002. Precomputed Radiance Transfer for Real-Time Rendering in Dynamic, Low-Frequency Lighting Environments. ACM Transactions on Graphics 21, 3 (July), 527–536. Google ScholarDigital Library
    32. Wang, X. C., and Phillips, C. 2002. Multi-Weight Enveloping: Least-Squares Approximation Techniques for Skin Animation. In ACM SIGGRAPH Symp. on Computer Animation, 129–138. Google ScholarDigital Library


ACM Digital Library Publication:



Overview Page: