“Single-view hair modeling using a hairstyle database” by Hu, Ma, Luo and Li

  • ©Liwen Hu, Chongyang Ma, Linjie Luo, and Hao Li

Conference:


Type:


Title:

    Single-view hair modeling using a hairstyle database

Presenter(s)/Author(s):



Abstract:


    Human hair presents highly convoluted structures and spans an extraordinarily wide range of hairstyles, which is essential for the digitization of compelling virtual avatars but also one of the most challenging to create. Cutting-edge hair modeling techniques typically rely on expensive capture devices and significant manual labor. We introduce a novel data-driven framework that can digitize complete and highly complex 3D hairstyles from a single-view photograph. We first construct a large database of manually crafted hair models from several online repositories. Given a reference photo of the target hairstyle and a few user strokes as guidance, we automatically search for multiple best matching examples from the database and combine them consistently into a single hairstyle to form the large-scale structure of the hair model. We then synthesize the final hair strands by jointly optimizing for the projected 2D similarity to the reference photo, the physical plausibility of each strand, as well as the local orientation coherency between neighboring strands. We demonstrate the effectiveness and robustness of our method on a variety of hairstyles and challenging images, and compare our system with state-of-the-art hair modeling algorithms.

References:


    1. Baltrusaitis, T., Robinson, P., and Morency, L.-P. 2013. Constrained local neural fields for robust facial landmark detection in the wild. In IEEE ICCVW, 354–361. Google ScholarDigital Library
    2. Bergou, M., Wardetzky, M., Robinson, S., Audoly, B., and Grinspun, E. 2008. Discrete elastic rods. ACM Trans. Graph. 27, 3, 63:1–63:12. Google ScholarDigital Library
    3. Bertails, F., Audoly, B., Cani, M.-P., Querleux, B., Leroy, F., and Lévêque, J.-L. 2006. Super-helices for predicting the dynamics of natural hair. ACM Trans. Graph. 25, 3, 1180–1187. Google ScholarDigital Library
    4. Blanz, V., and Vetter, T. 1999. A morphable model for the synthesis of 3d faces. In SIGGRAPH ’99, 187–194. Google ScholarDigital Library
    5. Bonneel, N., Paris, S., van de Panne, M., Durand, F., and Drettakis, G. 2009. Single photo estimation of hair appearance. In EGSR’09, 1171–1180. Google ScholarDigital Library
    6. Chai, M., Wang, L., Weng, Y., Yu, Y., Guo, B., and Zhou, K. 2012. Single-view hair modeling for portrait manipulation. ACM Trans. Graph. 31, 4, 116:1–116:8. Google ScholarDigital Library
    7. Chai, M., Wang, L., Weng, Y., Jin, X., and Zhou, K. 2013. Dynamic hair manipulation in images and videos. ACM Trans. Graph. 32, 4, 75:1–75:8. Google ScholarDigital Library
    8. Chai, M., Zheng, C., and Zhou, K. 2014. A reduced model for interactive hairs. ACM Trans. Graph. 33, 4, 124:1–124:11. Google ScholarDigital Library
    9. Chaudhuri, S., Kalogerakis, E., Guibas, L., and Koltun, V. 2011. Probabilistic reasoning for assembly-based 3D modeling. ACM Trans. Graphics 30, 4, 35:1–35:10. Google ScholarDigital Library
    10. Chen, T., Cheng, M.-M., Tan, P., Shamir, A., and Hu, S.-M. 2009. Sketch2photo: Internet image montage. ACM Trans. Graph. 28, 5, 124:1–124:10. Google ScholarDigital Library
    11. Cherin, N., Cordier, F., and Melkemi, M. 2014. Modeling piecewise helix curves from 2d sketches. Computer-Aided Design 46, 258–262. Google ScholarDigital Library
    12. Choe, B., and Ko, H.-S. 2005. A statistical wisp model and pseudophysical approaches for interactive hairstyle generation. IEEE Trans. Vis. Comput. Graph. 11, 2, 160–170. Google ScholarDigital Library
    13. Delong, A., Osokin, A., Isack, H. N., and Boykov, Y. 2012. Fast approximate energy minimization with label costs. International Journal of Computer Vision 96, 1, 1–27. Google ScholarDigital Library
    14. Derouet-Jourdan, A., Bertails-Descoubes, F., Daviet, G., and Thollot, J. 2013. Inverse dynamic hair modeling with frictional contact. ACM Trans. Graph. 32, 6, 159:1–159:10. Google ScholarDigital Library
    15. Echevarria, J. I., Bradley, D., Gutierrez, D., and Beeler, T. 2014. Capturing and stylizing hair for 3d fabrication. ACM Trans. Graph. 33, 4, 125:1–125:11. Google ScholarDigital Library
    16. Electronic Arts, 2014. The Sims Resource. http://www.thesimsresource.com/.Google Scholar
    17. Fu, H., Wei, Y., Tai, C.-L., and Quan, L. 2007. Sketching hairstyles. In SBIM ’07, 31–36. Google ScholarDigital Library
    18. Funkhouser, T., Kazhdan, M., Shilane, P., Min, P., Kiefer, W., Tal, A., Rusinkiewicz, S., and Dobkin, D. 2004. Modeling by example. ACM Trans. Graphics 23, 3, 652–663. Google ScholarDigital Library
    19. Hu, L., Ma, C., Luo, L., and Li, H. 2014. Robust hair capture using simulated examples. ACM Trans. Graph. 33, 4, 126:1–126:10. Google ScholarDigital Library
    20. Hu, L., Ma, C., Luo, L., Wei, L.-Y., and Li, H. 2014. Capturing braided hairstyles. ACM Trans. Graph. 33, 6, 225:1–225:9. Google ScholarDigital Library
    21. Huang, Z., Fu, H., and Lau, R. W. H. 2014. Data-driven segmentation and labeling of freehand sketches. ACM Trans. Graph. 33, 6, 175:1–175:10. Google ScholarDigital Library
    22. Jakob, W., Moon, J. T., and Marschner, S. 2009. Capturing hair assemblies fiber by fiber. ACM Trans. Graph. 28, 5, 164:1–164:9. Google ScholarDigital Library
    23. Kalogerakis, E., Chaudhuri, S., Koller, D., and Koltun, V. 2012. A probabilistic model for component-based shape synthesis. ACM Trans. Graph. 31, 4, 55:1–55:11. Google ScholarDigital Library
    24. Kholgade, N., Simon, T., Efros, A., and Sheikh, Y. 2014. 3d object manipulation in a single photograph using stock 3d models. ACM Trans. Graph. 33, 4, 127:1–127:12. Google ScholarDigital Library
    25. Kim, T.-Y., and Neumann, U. 2002. Interactive multiresolution hair modeling and editing. ACM Trans. Graph. 21, 3, 620–629. Google ScholarDigital Library
    26. Lay Herrera, T., Zinke, A., and Weber, A. 2012. Lighting hair from the inside: A thermal approach to hair reconstruction. ACM Trans. Graph. 31, 6, 146:1–146:9. Google ScholarDigital Library
    27. Lewis, J. P., Cordner, M., and Fong, N. 2000. Pose space deformation: A unified approach to shape interpolation and skeleton-driven deformation. In SIGGRAPH ’00, 165–172. Google ScholarDigital Library
    28. Li, H., Adams, B., Guibas, L. J., and Pauly, M. 2009. Robust single-view geometry and motion reconstruction. ACM Trans. Graph. 28, 5, 175:1–175:10. Google ScholarDigital Library
    29. Luo, L., Li, H., and Rusinkiewicz, S. 2013. Structure-aware hair capture. ACM Trans. Graph. 32, 4, 76:1–76:12. Google ScholarDigital Library
    30. Newsea, 2014. Newsea SIMS. http://www.newseasims.com/.Google Scholar
    31. Olsen, L., Samavati, F. F., Sousa, M. C., and Jorge, J. A. 2009. Sketch-based modeling: A survey. Computers & Graphics 33, 1, 85–103. Google ScholarDigital Library
    32. Paris, S., Chang, W., Kozhushnyan, O. I., Jarosz, W., Matusik, W., Zwicker, M., and Durand, F. 2008. Hair photobooth: Geometric and photometric acquisition of real hairstyles. ACM Trans. Graph. 27, 3, 30:1–30:9. Google ScholarDigital Library
    33. Shen, C.-H., Fu, H., Chen, K., and Hu, S.-M. 2012. Structure recovery by part assembly. ACM Trans. Graph. 31, 6, 180:1–180:11. Google ScholarDigital Library
    34. Shotton, J., Fitzgibbon, A., Cook, M., Sharp, T., Finocchio, M., Moore, R., Kipman, A., and Blake, A. 2011. Real-time human pose recognition in parts from single depth images. In CVPR ’11, 1297–1304. Google ScholarDigital Library
    35. Takayama, K., Panozzo, D., Sorkine-Hornung, A., and Sorkine-Hornung, O. 2013. Sketch-based generation and editing of quad meshes. ACM Trans. Graph. 32, 4, 97:1–97:8. Google ScholarDigital Library
    36. Wang, R. Y., and Popović, J. 2009. Real-time hand-tracking with a color glove. ACM Trans. Graph. 28, 3, 63:1–63:8. Google ScholarDigital Library
    37. Wang, L., Yu, Y., Zhou, K., and Guo, B. 2009. Example-based hair geometry synthesis. ACM Trans. Graph. 28, 3, 56:1–56:9. Google ScholarDigital Library
    38. Ward, K., Bertails, F., Kim, T.-Y., Marschner, S. R., Cani, M.-P., and Lin, M. C. 2007. A survey on hair modeling: Styling, simulation, and rendering. IEEE TVCG 13, 2, 213–234. Google ScholarDigital Library
    39. Weng, Y., Wang, L., Li, X., Chai, M., and Zhou, K. 2013. Hair interpolation for portrait morphing. Computer Graphics Forum 32, 7, 79–84.Google ScholarCross Ref
    40. Wither, J., Bertails, F., and Cani, M.-P. 2007. Realistic hair from a sketch. In SMI ’07, 33–42. Google ScholarDigital Library
    41. Xu, K., Zheng, H., Zhang, H., Cohen-Or, D., Liu, L., and Xiong, Y. 2011. Photo-inspired model-driven 3d object modeling. ACM Trans. Graph. 30, 4, 80:1–80:10. Google ScholarDigital Library
    42. Xu, K., Zhang, H., Cohen-Or, D., and Chen, B. 2012. Fit and diverse: Set evolution for inspiring 3d shape galleries. ACM Trans. Graph. 31, 4, 57:1–57:10. Google ScholarDigital Library
    43. Xu, K., Chen, K., Fu, H., Sun, W.-L., and Hu, S.-M. 2013. Sketch2scene: Sketch-based co-retrieval and co-placement of 3d models. ACM Trans. Graph. 32, 4, 123:1–123:15. Google ScholarDigital Library
    44. Xu, B., Chang, W., Sheffer, A., Bousseau, A., McCrae, J., and Singh, K. 2014. True2form: 3d curve networks from 2d sketches via selective regularization. ACM Trans. Graph. 33, 4, 131:1–131:13. Google ScholarDigital Library
    45. Xu, Z., Wu, H.-T., Wang, L., Zheng, C., Tong, X., and Qi, Y. 2014. Dynamic hair capture using spacetime optimization. ACM Trans. Graph. 33, 6, 224:1–224:11. Google ScholarDigital Library
    46. Yu, X., Yu, Z., Chen, X., and Yu, J. 2014. A hybrid image-cad based system for modeling realistic hairstyles. In I3D ’14, 63–70. Google ScholarDigital Library
    47. Yuksel, C., Schaefer, S., and Keyser, J. 2009. Hair meshes. ACM Trans. Graph. 28, 5, 166:1–166:7. Google ScholarDigital Library
    48. Zhou, S., Fu, H., Liu, L., Cohen-Or, D., and Han, X. 2010. Parametric reshaping of human bodies in images. ACM Trans. Graph. 29, 4, 126:1–126:10. Google ScholarDigital Library


ACM Digital Library Publication:



Overview Page: