“Simulating Liquids and Solid Liquid Interactions With Langragian Meshes” by Clausen, Wicke, Shewchuk and O’Brien

  • ©Pascal Clausen, Martin Wicke, Jonathan Richard Shewchuk, and James F. O'Brien

Conference:


Type(s):


Title:

    Simulating Liquids and Solid Liquid Interactions With Langragian Meshes

Session/Category Title:   Fluid Grids & Meshes


Presenter(s)/Author(s):


Moderator(s):



Abstract:


    This article describes a Lagrangian finite element method that simulates the behavior of liquids and solids in a unified framework. Local mesh improvement operations maintain a high-quality tetrahedral discretization even as the mesh is advected by fluid flow. We conserve volume and momentum, locally and globally, by assigning to each element an independent rest volume and adjusting it to correct for deviations during remeshing and collisions. Incompressibility is enforced with per-node pressure values, and extra degrees of freedom are selectively inserted to prevent pressure locking. Topological changes in the domain are explicitly treated with local mesh splitting and merging. Our method models surface tension with an implicit formulation based on surface energies computed on the boundary of the volume mesh.

    With this method we can model elastic, plastic, and liquid materials in a single mesh, with no need for explicit coupling. We also model heat diffusion and thermoelastic effects, which allow us to simulate phase changes. We demonstrate these capabilities in several fluid simulations at scales from millimeters to meters, including simulations of melting caused by external or thermoelastic heating.

References:


    1. Adams, B. and Wicke, M. 2009. Meshless approximation methods and applications in physics based modeling and animation. In Eurographics Tutorials. 213–239.
    2. Bargteil, A. W., Goktekin, T. G., O’Brien, J. F., and Strain, J. A. 2006. A semi-Lagrangian contouring method for fluid simulation. ACM Trans. Graph. 25, 1, 19–38.
    3. Bargteil, A. W., Wojtan, C., Hodgins, J. K., and Turk, G. 2007. A finite element method for animating large viscoplastic flow. ACM Trans. Graph. 26, 3, 16:1–16:8.
    4. Becker, M., Ihmsen, M., and Teschner, M. 2009. Corotated SPH for deformable solids. In Proceedings of the Eurographics Workshop on Natural Phenomena. 27–34.
    5. Belytschko, T. and Glaum, L. W. 1979. Application of higher order corotational stretch theories to nonlinear finite element analysis. Comput. Struct. 10, 1–2, 175–182.
    6. Belytschko, T., Krongauz, Y., Organ, D., and Fleming, M. 1996. Meshless methods: An overview and recent developments. Comput. Methods Appl. Mech. Engin. 139, 1, 3–47.
    7. Bielser, D., Maiwald, V. A., and Gross, M. H. 1999. Interactive cuts through 3-dimensional soft tissue. Comput. Graph. Forum 18, 3, 31–38.
    8. Brackbill, J., Kothe, D., and Zemach, C. 1992. A continuum method for modeling surface tension. J. Comput. Phys. 100, 335–354.
    9. Bro-Nielsen, M. and Cotin, S. 1996. Real-time volumetric deformable models for surgery simulation using finite elements and condensation. Comput. Graph. Forum 15, 3, 57–66.
    10. Brochu, T., Batty, C., and Bridson, R. 2010. Matching fluid simulation elements to surface geometry and topology. ACM Trans. Graph. 29, 4, 1–9.
    11. Brochu, T. and Bridson, R. 2009. Robust topological operations for dynamic explicit surfaces. SIAM J. Sci. Comput. 31, 4, 2472–2493.
    12. Budd, C. J., Huang, W., and Russell, R. D. 2009. Adaptivity with moving grids. In Acta Numerica 2009, Volume 18, 1–131.
    13. Caboussat, A., Clausen, P., and Rappaz, J. 2010. Numerical simulation of two-phase flow with interface tracking by adaptive Eulerian grid subdivision. Math. Comput. Model. 55, 490–504.
    14. Capell, S., Green, S., Curless, B., Duchamp, T., and Popović, Z. 2002. A multiresolution framework for dynamic deformations. In Proceedings of the Symposium on Computer Animation. 41–48.
    15. Cardoze, D., Cunha, A., Miller, G. L., Phillips, T., and Walkington, N. J. 2004. A Bézier-based approach to unstructured moving meshes. In Proceedings of the 20th Annual Symposium on Computational Geometry. 310–319.
    16. Carlson, M., Mucha, P. J., and Turk, G. 2004. Rigid fluid: Animating the interplay between rigid bodies and fluid. ACM Trans. Graph. 23, 3, 377–384.
    17. Carlson, M., Mucha, P. J., Van Horn III, R. B., and Turk, G. 2002. Melting and flowing. In Proceedings of the Symposium on Computer Animation. 167–174.
    18. Chen, D. T. and Zeltzer, D. 1992. Pump it up: Computer animation of a biomechanically based model of muscle using the finite element method. In Proceedings of the Annual Conference on Computer Graphics and Interactive Techniques (SIGGRAPH’92). 89–98.
    19. Chentanez, N., Alterovitz, R., Ritchie, D., Cho, L., Hauser, K. K., Goldberg, K., Shewchuk, J. R., and O’Brien, J. F. 2009. Interactive simulation of surgical needle insertion and steering. ACM Trans. Graph. 28, 3, 88:1–88:10.
    20. Chentanez, N., Feldman, B. E., Labelle, F., O’Brien, J. F., and Shewchuk, J. R. 2007. Liquid simulation on lattice-based tetrahedral meshes. In Proceedings of the Symposium on Computer Animation. 219–228.
    21. Chentanez, N., Goktekin, T. G., Feldman, B. E., and O’Brien, J. F. 2006. Simultaneous coupling of fluids and deformable bodies. In Proceedings of the Symposium on Computer Animation. 83–89.
    22. Cook, R. D., Malkus, D. S., Plesha, M. E., and Witt, R. J. 2001. Concepts and Applications of Finite Element Analysis 4th Ed. John Wiley & Sons, New York.
    23. Cremonesi, M., Frangi, A., and Perego, U. 2011. A Lagrangian finite element approach for the simulation of water-waves induced by landslides. Comput. Struct. 89, 11–12, 1086–1093.
    24. Dai, M. and Smith, D. P. 2005. Adaptive tetrahedral meshing in free-surface flow. J. Comput. Phys. 208, 1, 228–252.
    25. Debunne, G., Desbrun, M., Cani, M.-P., and Barr, A. H. 2001. Dynamic real-time deformations using space & time adaptive sampling. In Proceedings of the Annual Conference on Computer Graphics and Interactive Techniques (SIGGRAPH’01). 31–36.
    26. Dierkes, U., Hildebrandt, S., Kuester, A., and Wohlrab, O. 1992. Minimal Surfaces (I). Springer.
    27. Enright, D., Fedkiw, R., Ferziger, J., and Mitchell, I. 2002a. A hybrid particle level set method for improved interface capturing. J. Comput. Phys. 183, 1, 83–116.
    28. Enright, D. P., Marschner, S. R., and Fedkiw, R. P. 2002b. Animation and rendering of complex water surfaces. ACM Trans. Graph. 21, 3, 736–744.
    29. Erleben, K., Misztal, M. K., and Bærentzen, J. A. 2011. Mathematical foundation of the optimization-based fluid animation method. In Proceedings of the Symposium on Computer Animation. 101–110.
    30. Etzmuss, O., Keckeisen, M., and Strasser, W. 2003. A fast finite element solution for cloth modelling. In Proceedings of the Pacific Graphics Conference. 244–251.
    31. Feldman, B. E., O’Brien, J. F., and Klingner, B. M. 2005a. Animating gases with hybrid meshes. ACM Trans. Graph. 24, 3, 904–909.
    32. Feldman, B. E., O’Brien, J. F., Klingner, B. M., and Goktekin, T. G. 2005b. Fluids in deforming meshes. In Proceedings of the Symposium on Computer Animation. 255–260.
    33. Foster, N. and Fedkiw, R. 2001. Practical animation of liquids. ACM Trans. Graph. 20, 3, 23–30.
    34. Foster, N. and Metaxas, D. 1996. Realistic animation of liquids. Graph. Model. Image Process. 58, 5, 471–483.
    35. Gerszewski, D., Bhattacharya, H., and Bargteil, A. W. 2009. A point-based method for animating elastoplastic solids. In Proceedings of the Symposium on Computer Animation. 133–138.
    36. Goktekin, T. G., Bargteil, A. W., and O’Brien, J. F. 2004. A method for animating viscoelastic fluids. ACM Trans. Graph. 23, 3, 463–468.
    37. Gourret, J.-P., Thalmann, N. M., and Thalmann, D. 1989. Simulation of object and human skin deformations in a grasping task. In Proceedings of the Annual Conference on Computer Graphics and Interactive Techniques (SIGGRAPH’89). 21–30.
    38. Gray, A. 1998. Modern Differential Geometry of Curves and Surfaces with Mathematica. CRC Press.
    39. Grinspun, E., Krysl, P., and Schröder, P. 2002. CHARMS: A simple framework for adaptive simulation. ACM Trans. Graph. 21, 3, 281–290.
    40. Guendelman, E., Selle, A., Losasso, F., and Fedkiw, R. 2005. Coupling water and smoke to thin deformable and rigid shells. ACM Trans. Graph. 24, 3, 973–981.
    41. Guennebaud, G. and Gross, M. 2007. Algebraic point set surfaces. ACM Trans. Graph. 26, 3, 23:1–23:9.
    42. Harlow, F. H. and Welch, J. E. 1965. Numerical calculation of time-dependent viscous incompressible flow of fluid with a free surface. Phys. Fluids 8, 12, 2182–2189.
    43. Hong, J.-M. and Kim, C.-H. 2003. Animation of bubbles in fluid. Comput. Graph. Forum 22, 3, 253–262.
    44. Hong, J.-M. and Kim, C.-H. 2005. Discontinuous fluids. ACM Trans. Graph. 24, 3, 915–920.
    45. Irving, G., Schroeder, C., and Fedkiw, R. 2007. Volume conserving finite element simulations of deformable models. ACM Trans. Graph. 26, 3, 13:1–13:6.
    46. Irving, G., Teran, J., and Fedkiw, R. 2004. Invertible finite elements for robust simulation of large deformation. In Proceedings of the Symposium on Computer Animation. 131–140.
    47. Jones, M. T. and Plassmann, P. E. 1997. Adaptive refinement of unstructured finite-element meshes. Finit. Element Anal. Des. 25, 41–60.
    48. Kamrin, K. and Nave, J.-C. 2009. An Eulerian approach to the simulation of deformable solids: Application to finite-strain elasticity. http://arxiv.org/pdf/0901.3799.pdf.
    49. Kaufmann, P., Martin, S., Botsch, M., Grinspun, E., and Gross, M. 2009. Enrichment textures for detailed cutting of shells. ACM Trans. Graph. 28, 3, 50:1–50:10.
    50. Keiser, R., Adams, B., Gaser, D., Bazzi, P., Dutré, P., and Gross, M. 2005. A unified Lagrangian approach to solid-fluid animation. In Proceedings of the Eurographics Symposium on Point-Based Graphics. 125–133.
    51. Kharevych, L., Mullen, P., Owhadi, H., and Desbrun, M. 2009. Numerical coarsening of inhomogeneous elastic materials. ACM Trans. Graph. 28, 3, 51:1–51:8.
    52. Klingner, B. M., Feldman, B. E., Chentanez, N., and O’Brien, J. F. 2006. Fluid animation with dynamic meshes. ACM Trans. Graph. 25, 3, 820–825.
    53. Klingner, B. M. and Shewchuk, J. R. 2007. Aggressive tetrahedral mesh improvement. In Proceedings of the 16th International Meshing Roundtable. 3–23.
    54. Kobbelt, L. P., Botsch, M., Schwanecke, U., and Seidel, H.-P. 2001. Feature sensitive surface extraction from volume data. In Proceedings of the Annual Conference on Computer Graphics and Interactive Techniques (SIGGRAPH’01). 57–66.
    55. Kucharik, M., Garimella, R. V., Schofield, S. P., and Shashkov, M. J. 2010. A comparative study of interface reconstruction methods for multi-material ALE simulations. J. Comput. Phys. 229, 7, 2432–2452.
    56. Lamb, H. 1932. Hydrodynamics. Cambridge University Press.
    57. Landau, L. and Lifshitz, E. 1970. Theory of Elasticity. Pergamon Press, New York.
    58. Levin, D. I. W., Litven, J., Jones, G. L., Sueda, S., and Pai, D. K. 2011. Eulerian solid simulation with contact. ACM Trans. Graph. 30, 4, 36:1–36:10.
    59. Losasso, F., Gibou, F., and Fedkiw, R. 2004. Simulating water and smoke with an octree data structure. ACM Trans. Graph. 23, 3, 457–462.
    60. Losasso, F., Irving, G., Guendelman, E., and Fedkiw, R. 2006a. Melting and burning solids into liquids and gases. IEEE Trans. Vis. Comput. Graph. 12, 3, 343–352.
    61. Losasso, F., Shinar, T., Selle, A., and Fedkiw, R. 2006b. Multiple interacting liquids. ACM Trans. Graph. 25, 3, 812–819.
    62. Losasso, F., Talton, J., Kwatra, N., and Fedkiw, R. 2008. Two-way coupled SPH and particle level set fluid simulation. IEEE Trans. Vis. Comput. Graph. 14, 4, 797–804.
    63. Martin, S., Kaufmann, P., Botsch, M., Wicke, M., and Gross, M. 2008. Polyhedral finite elements using harmonic basis functions. Comput. Graph. Forum 27, 5, 1521–1529.
    64. Mauch, S., Noels, L., Zhao, Z., and Radovitzky, R. A. 2006. Lagrangian simulation of penetration environments via mesh healing and adaptive optimization. In Proceedings of the 25th Army Science Conference.
    65. Miller, G. and Pearce, A. 1989. Globular dynamics: A connected particle system for animating viscous fluids. Comput. Graph. 13, 3, 305–309.
    66. Misztal, M. K., Bridson, R., Erleben, K., Bærentzen, J. A., and Anton, F. 2010. Optimization-based fluid simulation on unstructured meshes. In Proceedings of the 7th Workshop on Virtual Reality Interaction and Physical Simulation. 11–20.
    67. Misztal, M. K., Erleben, K., Bargteil, A. W., Fursund, J., Christensen, B. B., Bærentzen, J. A., and Bridson, R. 2012. Multiphase flow of immiscible fluids on unstructured moving meshes. In Proceedings of the Symposium on Computer Animation. 97–106.
    68. Molino, N., Bao, Z., and Fedkiw, R. 2004. A virtual node algorithm for changing mesh topology during simulation. ACM Trans. Graph. 23, 3, 385–392.
    69. Müller, M., Dorsey, J., McMillan, L., Jagnow, R., and Cutler, B. 2002. Stable real-time deformations. In Proceedings of the Symposium on Computer Animation. 49–54.
    70. Müller, M. and Gross, M. H. 2004. Interactive virtual materials. In Proceedings of the Graphics Interface Conference. 239–246.
    71. Müller, M., Keiser, R., Nealen, A., Pauly, M., Gross, M., and Alexa, M. 2004. Point based animation of elastic, plastic and melting objects. In Proceedings of the Symposium on Computer Animation. 141–151.
    72. Müller, M., McMillan, L., Dorsey, J., and Jagnow, R. 2001. Real-time simulation of deformation and fracture of stiff materials. In Proceedings of the Eurographics Workshop on Computer Animation and Simulation. 113–124.
    73. Narain, R., Samii, A., and O’Brien, J. F. 2012. Adaptive anisotropic remeshing for cloth simulation. ACM Trans. Graph. 31, 6, 152:1–152:10.
    74. Nesme, M., Kry, P. G., Jeřábková, L., and Faure, F. 2009. Preserving topology and elasticity for embedded deformable models. ACM Trans. Graph. 28, 3, 52:1–52:9.
    75. Nour-Omid, B. and Rankin, C. 1991. Finite rotation analysis and consistent linearization using projectors. Comput. Methods Appl. Mech. Engin. 93, 3, 353–384.
    76. O’Brien, J. F., Bargteil, A. W., and Hodgins, J. K. 2002. Graphical modeling and animation of ductile fracture. ACM Trans. Graph. 21, 3, 291–294.
    77. O’Brien, J. F. and Hodgins, J. K. 1999. Graphical modeling and animation of brittle fracture. In Proceedings of the Annual Conference on Computer Graphics and Interactive Techniques (SIGGRAPH’99). 137–146.
    78. Oden, J. T. and Demkowicz, L. F. 1989. Advances in adaptive improvements: A survey of adaptive finite element methods in computational mechanics. In State-of-the-Art Surveys on Computational Mechanics. The American Society of Mechanical Engineers, 441–467.
    79. Osher, S. and Fedkiw, R. 2003. The Level Set Method and Dynamic Implicit Surfaces. Springer.
    80. Otaduy, M. A., Germann, D., Redon, S., and Gross, M. 2007. Adaptive deformations with fast tight bounds. In Proceedings of the Symposium on Computer Animation. 181–190.
    81. Parker, E. G. and O’Brien, J. F. 2009. Real-time deformation and fracture in a game environment. In Proceedings of the Symposium on Computer Animation. 156–166.
    82. Pauly, M., Keiser, R., Adams, B., Dutré, P., Gross, M., and Guibas, L. J. 2005. Meshless animation of fracturing solids. ACM Trans. Graph. 24, 3, 957–964.
    83. Rayleigh, J. 1879. On the capillary phenomena of jets. Proc. Roy. Soc. London 29, 71–97.
    84. Scardovelli, R. and Zaleski, S. 1999. Direct numerical simulation of free surface and interfacial flows. Ann. Rev. Fluid Mech. 31, 567–603.
    85. Sifakis, E., Shinar, T., Irving, G., and Fedkiw, R. 2007. Hybrid simulation of deformable solids. In Proceedings of the Symposium on Computer Animation. 81–90.
    86. Sin, F., Bargteil, A. W., and Hodgins, J. K. 2009. A point-based method for animating incompressible flow. In Proceedings of the Symposium on Computer Animation. 247–255.
    87. Smith, J., Witkin, A., and Baraff, D. 2001. Fast and controllable simulation of the shattering of brittle objects. Comput. Graph. Forum 20, 2, 81–91.
    88. Stam, J. 1999. Stable fluids. In Proceedings of the Annual Conference on Computer Graphics and Interactive Techniques (SIGGRAPH’99). 121–128.
    89. Steinemann, D., Otaduy, M. A., and Gross, M. 2006. Fast arbitrary splitting of deforming objects. In Proceedings of the Symposium on Computer Animation. 63–72.
    90. Thürey, N., Wojtan, C., Gross, M., and Turk, G. 2010. A multiscale approach to mesh-based surface tension flows. ACM Trans. Graph. 29, 4, 48:1–48:10.
    91. Wang, H., Mucha, P. J., and Turk, G. 2005. Water drops on surfaces. ACM Trans. Graph. 24, 3, 921–929.
    92. Wang, H., O’Brien, J., and Ramamoorthi, R. 2010. Multi-resolution isotropic strain limiting. ACM Trans. Graph. 29, 6, 156:1–156:10.
    93. Wicke, M., Ritchie, D., Klingner, B. M., Burke, S., Shewchuk, J. R., and O’Brien, J. F. 2010. Dynamic local remeshing for elastoplastic simulation. ACM Trans. Graph. 29, 4, 49:1–49:11.
    94. Wojtan, C., Thürey, N., Gross, M., and Turk, G. 2009. Deforming meshes that split and merge. ACM Trans. Graph. 28, 3, 76:1–76:10.
    95. Wojtan, C., Thürey, N., Gross, M., and Turk, G. 2010. Physics-inspired topology changes for thin fluid features. ACM Trans. Graph. 29, 4, 50:1–50:8.
    96. Wojtan, C. and Turk, G. 2008. Fast viscoelastic behavior with thin features. ACM Trans. Graph. 27, 3, 47:1–47:8.
    97. Zhang, Y., Wang, H., Wang, S., Tong, Y., and Zhou, K. 2012. A deformable surface model for real-time water drop animation. IEEE Trans. Vis. Comput. Graph. 18, 1281–1289.
    98. Zhu, Q.-H., Chen, Y., and Kaufman, A. 1998. Real-time biomechanically-based muscle volume deformation using FEM. Comput. Graph. Forum 17, 3, 275–284.

ACM Digital Library Publication:



Overview Page: