“Simulating biped behaviors from human motion data” by Sok, Kim and Lee

  • ©Kwang Won Sok, Manmyung Kim, and Jehee Lee




    Simulating biped behaviors from human motion data



    Physically based simulation of human motions is an important issue in the context of computer animation, robotics and biomechanics. We present a new technique for allowing our physically-simulated planar biped characters to imitate human behaviors. Our contribution is twofold. We developed an optimization method that transforms any (either motion-captured or kinematically synthesized) biped motion into a physically-feasible, balance-maintaining simulated motion. Our optimization method allows us to collect a rich set of training data that contains stylistic, personality-rich human behaviors. Our controller learning algorithm facilitates the creation and composition of robust dynamic controllers that are learned from training data. We demonstrate a planar articulated character that is dynamically simulated in real time, equipped with an integrated repertoire of motor skills, and controlled interactively to perform desired motions.


    1. AIST Human Body Properties Database, 2006. http://www.dh.aist.go.jp/bodydb.Google Scholar
    2. Anderson, F., and Pandy’, M. 2001. Dynamic optimization of human walking. Journal of Biomechanical Engineering 123, 381–390.Google ScholarCross Ref
    3. Arikan, O., Forsyth, D. A., and O’Brien, J. F. 2003. Motion synthesis from annotations. ACM Transactions on Graphics (SIGGRAPH 2003) 22, 3, 402–408. Google ScholarDigital Library
    4. Arikan, O., Forsyth, D., and O’Brien, J. 2005. Pushing people around. In SCA ’05: Proceedings of the 2005 ACM SIGGRAPH/Eurographics Symposium on Computer Animation, 59–66. Google ScholarDigital Library
    5. Bruderlin, A., and Calvert, T. W. 1989. Goal-directed, dynamic animation of human walking. In Computer Graphics (Proceedings of SIGGRAPH 89), vol. 23, 233–242. Google ScholarDigital Library
    6. Cohen, M. F. 1992. Interactive spacetime control for animation. In proceedings of SIGGRAPH 92, 293–302. Google ScholarDigital Library
    7. Dasgupta, A., and Nakamura, Y. 1999. making feasible walking motion of humanoid robots from human motion capture data. In Proceedings of IEEE Intl. Conference on Robotics and Automation (ICRA), 1044–1049.Google Scholar
    8. Faloutsos, P., van de Panne, M., and Terzopoulos, D. 2001. Composable controllers for physics-based character animation. In Proceedings of SIGGRAPH 2001, 251–260. Google ScholarDigital Library
    9. Fang, A. C., and Pollard, N. S. 2003. Efficient synthesis of physically valid human motion. ACM Transactions on Graphics (SIGGRAPH 2003) 22, 3, 417–426. Google ScholarDigital Library
    10. Hertzmann, A., 2004. Introduction to bayesian learning, siggraph course notes. Google ScholarDigital Library
    11. Hodgins, J. K., and Pollard, N. S. 1997. Adapting simulated behaviors for new characters. In Proceedings of SIGGRAPH 97, 153–162. Google ScholarDigital Library
    12. Hodgins, J. K., Wooten, W. L., Brogan, D. C., and O’Brien, J. F. 1995. Animating human athletics. In Proceedings of SIGGRAPH 95, 71–78. Google ScholarDigital Library
    13. Kajita, S., Kanehiro, F., Kaneko, K., Fujiwara, K., Harada, K., Yokoi, K., and Hirukawa, H. 2003. Biped walking pattern generation by using preview control of zero-moment point. In Proceedings of the IEEE International Conference on Robotics and Automation, 1620–1626.Google Scholar
    14. Komura, T., Leung, H., and Kuffner, J. 2004. Animating reactive motions for biped locomotion. In VRST’04: Proceedings of the ACM symposium on Virtual reality software and technology, 32–40. Google ScholarDigital Library
    15. Kovar, L., Gleicher, M., and Pighin, F. 2002. Motion graphs. ACM Transactions on Graphics (SIGGRAPH 2002) 21, 3, 473–482. Google ScholarDigital Library
    16. Laszlo, J., van de Panne, M., and Fiume, E. 1996. Limit cycle control and its application to the animation of balancing and walking. In Proceedings of SIGGRAPH 96, 155–162. Google ScholarDigital Library
    17. Laszlo, J., van de Panne, M., and Fiume, E. 2000. Interactive control for physically-based animation. In Proceedings of SIGGRAPH 2000, 201–208. Google ScholarDigital Library
    18. Lee, J., and Shin, S. Y. 1999. A hierarchical approach to interactive motion editing for human-like figures. In Proceedings of SIGGRAPH 99, 39–48. Google ScholarDigital Library
    19. Lee, J., Chai, J., Reitsma, P. S. A., Hodgins, J. K., and Pollard, N. S. 2002. Interactive control of avatars animated with human motion data. ACM Transactions on Graphics (SIGGRAPH 2002) 21, 3, 491–500. Google ScholarDigital Library
    20. Liu, C. K., and Popović, Z. 2002. Synthesis of complex dynamic character motion from simple animations. vol. 21, 408–416. Google ScholarDigital Library
    21. Liu, C. K., Hertzmann, A., and Popovic, Z. 2005. Learning physics-based motion style with nonlinear inverse optimization. ACM Transactions on Graphics (SIGGRAPH 2005) 24, 3, 1071–1081. Google ScholarDigital Library
    22. Loken, K. 2006. Imitation-based Learning of Bipedal Walking Using Locally Weighted Learning. Master’s thesis, Computer Science Department, The University of British Columbia.Google Scholar
    23. Mount, D., and Arya, S., 2006. Ann: Library for approximate nearest neighbor searching, http://www.cs.sunysb.edu/algorith/implement/ann/distrib/index1.html.Google Scholar
    24. Nakanishi, J., Morimoto, J., Endo, G., Cheng, G., Schaal, S., and Kawato, M. 2004. Learning from demonstration and adaptation of biped locomotion. Robotics and Autonomous Systems 47, 79–91.Google ScholarCross Ref
    25. Nakaoka, S., Nakazawa, A., and Yokoi, K. 2003. Generating whole body motions for a biped humanoid robot from captured human dances. In Proceedings of the IEEE International Conference on Robotics and Automation, 3905–3910.Google Scholar
    26. Oshita, M., and Makinouchi, A. 2001. A dynamic motion control technique for human-like articulated figures. Computer Graphics Forum (EUROGRAPHICS 2001) 20, 3, 192–202.Google Scholar
    27. Popović, Z., and Witkin, A. P. 1999. Physically based motion transformation. In Proceedings of SIGGRAPH 99, 11–20. Google ScholarDigital Library
    28. Press, W. H., Teukolskey, S. A., Vetterling, W. T., and Flannery, B. P. 2002. Numerical Recipes in C++ (2nd Edition). Cambridge University Press. Google ScholarDigital Library
    29. Safonova, A., Pollard, N. S., and Hodgins, J. K. 2003. Optimizing human motion for the control of a humanoid robot. In Proceedings of 2nd International Symposium on Adaptive Motion of Animals and Machines (AMAM2003).Google Scholar
    30. Safonova, A., Hodgins, J. K., and Pollard, N. S. 2004. Synthesizing physically realistic human motion in low-dimensional, behavior-specific spaces. ACM Transactions on Graphics (SIGGRAPH 2004) 23, 3, 514–521. Google ScholarDigital Library
    31. Schaal, S., Ijspeert, A., and Billard, A. 2003. Computational approaches to motor learning by imitation. Philosophical Transaction of the Royal Society of London: Series B, Biological Sciences 358, 537–547.Google ScholarCross Ref
    32. Sharon, D., and van de Panne, M. 2005. Synthesis of controllers for stylized planar bipedal walking. In International Conference on Robotics and Automation (ICRA 2005), 18–22.Google Scholar
    33. Smith, R., 2006. Open dynamics engine, http://www.ode.org.Google Scholar
    34. Sulejmanpasić, A., and Popović, J. 2005. Adaptation of performed ballistic motion. ACM Transactions on Graphics 24, 1, 165–179. Google ScholarDigital Library
    35. Sun, H. C., and Metaxas, D. N. 2001. Automating gait animation. In Proceedings of SIGGRAPH 2001, 261–270. Google ScholarDigital Library
    36. Tak, S., Song, O.-Y., and Ko, H.-S. 2000. Motion balance filtering. Computer Graphics Forum (Eurographics 2000) 19, 3, 437–446.Google Scholar
    37. Yamane, K., and Nakamura, Y. 2000. Dynamics filter – concept and implementation of on-line motion generator for human figures. In Proceedings of the IEEE International Conference on Robotics and Automation, 688–695.Google Scholar
    38. Yin, K., Pai, D. K., and van de Panne, M. 2005. Data-driven interactive balancing behaviors. In Pacific Graphics.Google Scholar
    39. Yin, K., Loken, K., and van de Panne, M. 2007. Simbicon: Simple biped locomotion control. ACM Transactions on Graphics (SIGGRAPH 2007) 26, 3. Google ScholarDigital Library
    40. Zordan, V. B., and Hodgins, J. K. 2002. Motion capture-driven simulations that hit and react. In Proceedings of ACM SIGGRAPH Symposium on Computer Animation, 89–96. Google ScholarDigital Library
    41. Zordan, V. B., Majkowska, A., Chiu, B., and Fast, M. 2005. Dynamic response for motion capture animation. ACM Transactions on Graphics (SIGGRAPH 2005) 24, 3, 697–701. Google ScholarDigital Library

ACM Digital Library Publication:

Overview Page: