“Shape dithering for 3D printing” by Morsy, Morsy, Brunton and Urban

  • ©Mostafa (Abdelkader) Morsy, Alan Brunton, and Philipp Urban

Conference:


Type(s):


Title:

    Shape dithering for 3D printing

Presenter(s)/Author(s):



Abstract:


    We present an efficient, purely geometric, algorithmic, and parameter free approach to improve surface quality and accuracy in voxel-controlled 3D printing by counteracting quantization artifacts. Such artifacts arise due to the discrete voxel sampling of the continuous shape used to control the 3D printer, and are characterized by low-frequency geometric patterns on surfaces of any orientation. They are visually disturbing, particularly on small prints or smooth surfaces, and adversely affect the fatigue behavior of printed parts. We use implicit shape dithering, displacing the part’s signed distance field with a high-frequent signal whose amplitude is adapted to the (anisotropic) print resolution. We expand the reverse generalized Fourier slice theorem by shear transforms, which we leverage to optimize a 3D blue-noise mask to generate the anisotropic dither signal. As a point process it is efficient and does not adversely affect 3D halftoning. We evaluate our approach for efficiency, geometric accuracy and show its advantages over the state of the art.

References:


    1. 3D Printing Industry. 2020. Mimaki 3DUJ-2207 UV-LED 3D Printer. https://3dprintingindustry.com/news/mimaki-opens-up-full-3d-color-printing-for-less-than-e40k-with-3duj-2207-uv-led-3d-printer-178953/.Google Scholar
    2. A.U. Agar and J.P. Allebach. 2005. Model-based color halftoning using direct binary search. Image Processing, IEEE Transactions on 14, 12 (2005), 1945–1959.Google ScholarDigital Library
    3. M. Alexa, K. Hildebrand, and S. Lefebvre. 2017. Optimal Discrete Slicing. ACM TOG 36, 1, Article 12 (Jan. 2017), 16 pages. Google ScholarDigital Library
    4. M. Alexa and J.E. Kyprianidis. 2015. Error diffusion on meshes. Computers and Graphics (Proc. SMI 2014) 46 (2015), 336–344.Google Scholar
    5. T. Auzinger, W. Heidrich, and B. Bickel. 2018. Computational design of nanostructural color for additive manufacturing. ACM TOG (Proc. SIGGRAPH) 37, 4 (2018), 1–16.Google ScholarDigital Library
    6. T. Baar, S. Samadzadegan, H. Brettel, P. Urban, and M. V. Ortiz Segovia. 2014. Printing gloss effects in a 2.5 D system. In IS&T/SPIE Electronic Imaging. International Society for Optics and Photonics, 90180M–90180M.Google Scholar
    7. V. Babaei, K. Vidimče, M. Foshey, A. Kaspar, P. Didyk, and W. Matusik. 2017. Color contoning for 3D printing. ACM TOG (Proc. SIGGRAPH) 36, 124 (2017). Issue 4.Google Scholar
    8. B. E. Bayer. 1973. An optimum method for two-level rendition of continuous-tone pictures. In IEEE Intl. Conf. on Comm. Seattle, WA, 11–15.Google Scholar
    9. A. Brunton and L. Abu Rmaileh. 2021. Displaced Signed Distance Fields for Additive Manufacturing. ACM TOG (Proc. SIGGRAPH) 40, 4 (2021).Google Scholar
    10. A. Brunton, C. A. Arikan, T. M. Tanksale, and P. Urban. 2018. 3D Printing Spatially Varying Color and Translucency. ACM TOG (Proc. SIGGRAPH) 37, 4 (2018), 157:1–157:13.Google Scholar
    11. A. Brunton, C. A. Arikan, and P. Urban. 2015. Pushing the Limits of 3D Color Printing: Error Diffusion with Translucent Materials. ACM TOG 35, 1 (2015), 4.Google ScholarDigital Library
    12. J. Chang, B. Alain, and V. Ostromoukhov. 2009. Structure-Aware Error Diffusion. ACM TOG (Proc. SIGGRAPH Asia) 28, 5 (2009), 162:1–162:8.Google Scholar
    13. W. Cho, E.M. Sachs, N. M. Patrikalakis, and D. E. Troxel. 2003. A dithering algorithm for local composition control with three-dimensional printing. CAD 35, 9 (2003), 851–867.Google ScholarCross Ref
    14. Paolo Cignoni, Marco Callieri, Massimiliano Corsini, Matteo Dellepiane, Fabio Ganovelli, and Guido Ranzuglia. 2008. MeshLab: an Open-Source Mesh Processing Tool. In Eurographics Italian Chapter Conference, Vittorio Scarano, Rosario De Chiara, and Ugo Erra (Eds.). The Eurographics Association. Google ScholarCross Ref
    15. D. Cohen-Or and A. Kaufman. 1995. Fundamentals of Surface Voxelization. Graphical Models and Image Processing 57, 6 (November 1995), 453–461.Google ScholarDigital Library
    16. Y. Dong, J. Wang, F. Pellacini, X. Tong, and B. Guo. 2010. Fabricating spatially-varying subsurface scattering. ACM TOG (Proc. SIGGRAPH) 29, 4 (2010), 62:1–62:10.Google Scholar
    17. DP Polar. 2020. AMpolar i2. https://www.dppolar.de/en/3d-printer.Google Scholar
    18. O. Elek, D. Sumin, R. Zhang, T. Weyrich, K. Myszkowski, B. Bickel, A. Wilkie, and J. Křivánek. 2017. Scattering-aware Texture Reproduction for 3D Printing. ACM TOG (Proc. of SIGGRAPH Asia) 36, 6 (2017), 241:1–241:15.Google Scholar
    19. R.W. Floyd and L. Steinberg. 1976. An adaptive algorithm for spatial grey scale. In Proceedings of the Society of Information Display. SID, 75–77.Google Scholar
    20. M. Hašan, M. Fuchs, W. Matusik, H. Pfister, and S. Rusinkiewicz. 2010. Physical reproduction of materials with specified subsurface scattering. ACM TOG (Proc. SIGGRAPH) 29, 4 (2010), 61:1–61:9.Google Scholar
    21. Fraunhofer IGD. 2020. Cuttlefish Version 2020.09. https://www.cuttlefish.de/.Google Scholar
    22. Intel. 2020. Intel Threading Building Blocks. https://software.intel.com/content/www/us/en/develop/tools/threading-building-blocks.html.Google Scholar
    23. A. Kampker, K. Kreisköther, and C. Reinders. 2017. Material and Parameter Analysis of the PolyJet Process for Mold Making Using Design of Experiments. International Journal of Materials and Metallurgical Engineering 11, 3 (2017), 242 — 249. https://publications.waset.org/vol/123Google Scholar
    24. E. Kritchman. 2010. Method for printing of three-dimensional objects. US Patent 7,658,976.Google Scholar
    25. Ares Lagae and George Drettakis. 2011. Filtering solid Gabor noise. ACM Transactions on Graphics (TOG) 30, 4 (2011), 1–6.Google ScholarDigital Library
    26. Y. Lan, Y. Dong, F. Pellacini, and X. Tong. 2013. Bi-scale appearance fabrication. ACM TOG (Proc. SIGGRAPH) 32, 4 (2013), 145–1.Google ScholarDigital Library
    27. D.L. Lau, G.R. Arce, and N.C. Gallagher. 1999. Digital halftoning by means of green-noise masks. JOSA A 16, 7 (1999), 1575–1586.Google ScholarCross Ref
    28. D. L. Lau and G. R. Arce. 2001. Modern digital halftoning. CRC Press.Google Scholar
    29. W.E. Lorensen and H.E. Cline. 1987. Marching Cubes: A High Resolution 3D Surface Construction Algorithm. SIGGRAPH Comput. Graph. 21, 4 (Aug. 1987), 163–169. Google ScholarDigital Library
    30. A. Luongo, V. Falster, M.B. Doest, M.M. Ribo, E.R. Eiríksson, D.B. Pedersen, and J.R. Frisvad. 2020. Microstructure control in 3D printing with digital light processing. 39, 1 (2020), 347–359.Google Scholar
    31. T. Malzbender, R. Samadani, S. Scher, A. Crume, D. Dunn, and J. Davis. 2012. Printing reflectance functions. ACM TOG 31, 3 (2012), 1–11.Google ScholarDigital Library
    32. W. Matusik, B. Ajdin, J. Gu, J. Lawrence, H. Lensch, F. Pellacini, and S. Rusinkiewicz. 2009. Printing spatially-varying reflectance. In ACM Transactions on Graphics (TOG), Vol. 28. ACM, 128.Google Scholar
    33. Mimaki. 2020. 3DUJ-553 3D Printer. https://www.mimakieurope.com/products/3d/3duj-553/.Google Scholar
    34. T. Mitsa and K.J. Parker. 1992. Digital halftoning technique using a blue-noise mask. JOSA A 9, 11 (1992), 1920–1929.Google ScholarCross Ref
    35. J.P. Moore and C.B. Williams. 2015. Fatigue properties of parts printed by PolyJet material jetting. Rapid Prototyping Journal (2015).Google Scholar
    36. P. Morovič, J. Morovič, J. Gondek, and R. Ulichney. 2017a. Direct pattern control halftoning of Neugebauer primaries. IEEE TIP 26, 9 (2017), 4404–4413.Google Scholar
    37. P. Morovič, J. Morovič, I. Tastl, M. Gottwals, and G. Dispoto. 2017b. HANS3D: a multi-material, volumetric, voxel-by-voxel content processing pipeline for color and beyond. In Color and Imaging Conference, Vol. 2017. Society for Imaging Science and Technology, 219–225.Google Scholar
    38. E. Napadensky. 2014. Method and system for three-dimensional fabrication. US Patent 8,784,723.Google Scholar
    39. R. Ng. 2005. Fourier slice photography. ACM TOG (2005), 735–744.Google Scholar
    40. A. Orth, K.L. Sampson, K. Ting, J. Boisvert, and C. Paquet. 2021. Correcting ray distortion in tomographic additive manufacturing. Optics Express 29, 7 (Mar 2021), 11037–11054. Google ScholarCross Ref
    41. V. Ostromoukhov. 2001. A Simple and Efficient Error-Diffusion Algorithm. In Proc. SIGGRAPH.Google ScholarDigital Library
    42. M. Page, G. Obein, C. Boust, and A. Razet. 2017. Adapted modulation transfer function method for characterization and improvement of 3D printed surfaces. Electronic Imaging 2017, 8 (2017), 92–100.Google ScholarCross Ref
    43. W.-M. Pang, Y. Qu, T.-T. Wong, D. Cohen-Or, and P.A. Heng. 2008. Structure-aware halftoning. ACM TOG (Proc. SIGGRAPH) 27, 3 (2008), 89.Google ScholarDigital Library
    44. C. Peters. 2017. Moments in Graphics: The problem with 3D blue noise. http://momentsingraphics.de/3DBlueNoise.html.Google Scholar
    45. M. Piovarči, M. Foshey, V. Babaei, S. Rusinkiewicz, W. Matusik, and P. Didyk. 2020. Towards spatially varying gloss reproduction for 3D printing. ACM TOG (Proc. SIGGRAPH Asia) 39, 6 (2020), 1–13.Google ScholarDigital Library
    46. Quantica. 2020. Tech Platform. https://quantica3d.com/technology/.Google Scholar
    47. O. Rouiller, B. Bickel, J. Kautz, W. Matusik, and M. Alexa. 2013. 3D-printing spatially varying BRDFs. IEEE CG&A 33, 6 (2013), 48–57.Google Scholar
    48. S. Samadzadegan, T. Baar, P. Urban, M.V.O. Segovia, and J. Blahová. 2015. Controlling colour-printed gloss by varnish-halftones. In Measuring, Modeling, and Reproducing Material Appearance 2015, Vol. 9398. International Society for Optics and Photonics, 93980V.Google Scholar
    49. Stratasys. 2020. J8 Series 3D Printers. https://www.stratasys.com/3d-printers/j8-series.Google Scholar
    50. D. Sumin, T. Rittig, Babaei V, T. Nindel, A. Wilkie, P. Didyk, B. Bickel, J. KR, ivánek, K. Myszkowski, and T. Weyrich. 2019. Geometry-aware scattering compensation for 3D printing. ACM TOG (Proc. SIGGRAPH) 38, 4 (2019).Google Scholar
    51. G. Taubin. 1995. A Signal Processing Approach to Fair Surface Design. In Proceedings of the 22nd Annual Conference on Computer Graphics and Interactive Techniques (SIGGRAPH ’95). Association for Computing Machinery, New York, NY, USA, 351–358. Google ScholarDigital Library
    52. R.A. Ulichney. 1993. Void-and-cluster method for dither array generation. In Human Vision, Visual Processing, and Digital Display IV, Vol. 1913. International Society for Optics and Photonics, 332–343.Google Scholar
    53. F. L. Van Nes and M. A. Bouman. 1967. Spatial modulation transfer in the human eye. JOSA 57, 3 (1967), 401–406.Google ScholarCross Ref
    54. Z. Wang, A.C. Bovik, H.R. Sheikh, and E.P. Simoncelli. 2004. Image Quality Assessment: From Error Visibility to Structural Similarity. IEEE Transactions on Image Processing 13, 4 (2004), 600–612.Google ScholarDigital Library
    55. Xaar. 2020. High Laydown Technology. https://www.xaar.com/en/about/xaar-technologies/high-laydown-technology/.Google Scholar
    56. D.-M. Yan, J.-W. Guo, B. Wang, X.-P. Zhang, and P. Wonka. 2015. A Survey of Blue-Noise Sampling and Its Applications. J. Comp. Sci. and Tech. 30 (2015), 439–453.Google ScholarCross Ref
    57. B. Zhou and X. Fang. 2003. Improving Mid-tone Quality of Variable-Coefficient Error Diffusion Using Threshold Modulation. ACM TOG (Proc. SIGGRAPH) 22, 3 (2003), 437–444.Google ScholarDigital Library


ACM Digital Library Publication:



Overview Page: