“Sensitivity-optimized rigging for example-based real-time clothing synthesis” by Xu, Umetani, Chao, Mao, Jin, et al. …

  • ©Weiwei Xu, Nobuyuki Umetani, Qianwen Chao, Jie Mao, Xiaogang Jin, and Xin Tong




    Sensitivity-optimized rigging for example-based real-time clothing synthesis

Session/Category Title:   Subspace & Spacetime




    We present a real-time solution for generating detailed clothing deformations from pre-computed clothing shape examples. Given an input pose, it synthesizes a clothing deformation by blending skinned clothing deformations of nearby examples controlled by the body skeleton. Observing that cloth deformation can be well modeled with sensitivity analysis driven by the underlying skeleton, we introduce a sensitivity based method to construct a pose-dependent rigging solution from sparse examples. We also develop a sensitivity based blending scheme to find nearby examples for the input pose and evaluate their contributions to the result. Finally, we propose a stochastic optimization based greedy scheme for sampling the pose space and generating example clothing shapes. Our solution is fast, compact and can generate realistic clothing animation results for various kinds of clothes in real time.


    1. Anguelov, D., Srinivasan, P., Koller, D., Thrun, S., Rodgers, J., and Davis, J. 2005. SCAPE: Shape completion and animation of people. ACM Trans. Graph. 24, 3, 408–416. Google ScholarDigital Library
    2. Baran, I., and Popović, J. 2007. Automatic rigging and animation of 3d characters. ACM Trans. Graph. 26, 3. Google ScholarDigital Library
    3. Bergou, M., Mathur, S., Wardetzky, M., and Grinspun, E. 2007. TRACKS: toward directable thin shells. ACM Trans. Graph. 26, 3. Google ScholarDigital Library
    4. Bickel, B., Bächer, M., Otaduy, M. A., Lee, H. R., Pfister, H., Gross, M., and Matusik, W. 2010. Design and fabrication of materials with desired deformation behavior. ACM Trans. Graph. 29, 4, 63:1–63:10. Google ScholarDigital Library
    5. Bridson, R., Fedkiw, R., and Anderson, J. 2002. Robust treatment of collisions, contact and friction for cloth animation. ACM Trans. Graph. 21, 3, 594–603. Google ScholarDigital Library
    6. Carr, J. C., Beatson, R. K., Cherrie, J. B., Mitchell, T. J., Fright, W. R., McCallum, B. C., and Evans, T. R. 2001. Reconstruction and representation of 3D objects with radial basis functions. In Proc. of the 28th annual conference on Computer graphics and interactive techniques, SIGGRAPH ’01, 67–76. Google ScholarDigital Library
    7. Chen, Z., Feng, R., and Wang, H. 2013. Modeling friction and air effects between cloth and deformable bodies. ACM Trans. Graph. 32, 4, 88:1–88:8. Google ScholarDigital Library
    8. Choi, K.-J., and Ko, H.-S. 2002. Stable but responsive cloth. ACM Trans. Graph. 21, 3, 604–611. Google ScholarDigital Library
    9. Choi, K.-J., and Ko, H.-S. 2005. Research problems in clothing simulation. Computer-Aided Design 37, 6, 585–592. Google ScholarDigital Library
    10. CMU, 2003. CMU graphics lab motion capture database. http://mocap.cs.cmu.edu.Google Scholar
    11. Cordier, F., and Magnenat-Thalmann, N. 2004. A data-driven approach for real-time clothes simulation. In Computer Graphics and Applications, 2004. PG 2004. Proceedings. 12th Pacific Conference on, 257–266. Google ScholarDigital Library
    12. de Aguiar, E., Sigal, L., Treuille, A., and Hodgins, J. K. 2010. Stable spaces for real-time clothing. ACM Trans. Graph. 29, 106:1–106:9. Google ScholarDigital Library
    13. Derouet-Jourdan, A., Bertails-Descoubes, F., and Thollot, J. 2010. Stable inverse dynamic curves. ACM Trans. Graph. 29, 6, 137:1–137:10. Google ScholarDigital Library
    14. Digest, R. 2010. The New Complete Guide to Sewing: Step-by-Step Techniques for Making Clothes and Home Accessories Updated Edition with All-New Projects and Simplicity Patterns (Reader’s Digest). Readers Digest.Google Scholar
    15. English, E., and Bridson, R. 2008. Animating developable surfaces using nonconforming elements. ACM Trans. Graph. 27, 3, 66:1–66:5. Google ScholarDigital Library
    16. Feng, W.-W., Yu, Y., and Kim, B.-U. 2010. A deformation transformer for real-time cloth animation. ACM Trans. Graph. 29, 4, 108:1–108:9. Google ScholarDigital Library
    17. Gallagher, R. H. 1973. Optimum Structural Design: Theory and Applications. John Wiley & Sons Inc.Google Scholar
    18. Govindaraju, N. K., Knott, D., Jain, N., Kabul, I., Tamstorf, R., Gayle, R., Lin, M. C., and Manocha, D. 2005. Interactive collision detection between deformable models using chromatic decomposition. ACM Trans. Graph. 24, 3, 991–999. Google ScholarDigital Library
    19. Grinspun, E., Hirani, A. N., Desbrun, M., and Schröder, P. 2003. Discrete shells. In Proc. of the 2003 ACM SIGGRAPH/Eurographics symposium on Computer animation, SCA ’03, 62–67. Google ScholarDigital Library
    20. Guan, P., Reiss, L., Hirshberg, D. A., Weiss, A., and Black, M. J. 2012. DRAPE: Dressing any person. ACM Trans. Graph. 31, 4, 35:1–35:10. Google ScholarDigital Library
    21. Harmon, D., Vouga, E., Tamstorf, R., and Grinspun, E. 2008. Robust treatment of simultaneous collisions. ACM Trans. Graph. 27, 3, 23:1–23:4. Google ScholarDigital Library
    22. James, D. L., and Fatahalian, K. 2003. Precomputing interactive dynamic deformable scenes. ACM Trans. Graph. 22, 3, 879–887. Google ScholarDigital Library
    23. Kaldor, J. M., James, D. L., and Marschner, S. 2008. Simulating knitted cloth at the yarn level. ACM Trans. Graph. 27, 3, 65:1–65:9. Google ScholarDigital Library
    24. Kavan, L., Collins, S., Žára, J., and O’Sullivan, C. 2008. Geometric skinning with approximate dual quaternion blending. ACM Trans. Graph. 27, 4, 105:1–105:23. Google ScholarDigital Library
    25. Kavan, L., Gerszewski, D., Bargteil, A. W., and Sloan, P.-P. 2011. Physics-inspired upsampling for cloth simulation in games. ACM Trans. Graph. 30, 4, 93:1–93:10. Google ScholarDigital Library
    26. Kim, T.-Y., and Vendrovsky, E. 2008. Drivenshape: a data-driven approach for shape deformation. In Proceedings of the 2008 ACM SIGGRAPH/Eurographics Symposium on Computer Animation, SCA ’08, 49–55. Google ScholarDigital Library
    27. Kim, D., Koh, W., Narain, R., Fatahalian, K., Treuille, A., and O’Brien, J. F. 2013. Near-exhaustive precomputation of secondary cloth effects. ACM Trans. Graph. 32, 4, 87:1–87:8. Google ScholarDigital Library
    28. Kry, P. G., James, D. L., and Pai, D. K. 2002. Eigenskin: Real time large deformation character skinning in hardware. In In ACM SIGGRAPH Symposium on Computer Animation, ACM Press, 153–159. Google ScholarDigital Library
    29. Lewis, J. P., Cordner, M., and Fong, N. 2000. Pose space deformation: A unified approach to shape interpolation and skeleton-driven deformation. In Proceedings of the 27th Annual Conference on Computer Graphics and Interactive Techniques, ACM Press/Addison-Wesley Publishing Co., New York, NY, USA, SIGGRAPH ’00, 165–172. Google ScholarDigital Library
    30. Merrell, P., Schkufza, E., Li, Z., Agrawala, M., and Koltun, V. 2011. Interactive furniture layout using interior design guidelines. ACM Trans. Graph. 30, 4, 87:1–87:10. Google ScholarDigital Library
    31. Miguel, E., Tamstorf, R., Bradley, D., Schvartzman, S. C., Thomaszewski, B., Bickel, B., Matusik, W., Marschner, S., and Otaduy, M. A. 2013. Modeling and estimation of internal friction in cloth. ACM Trans. Graph. 32, 6, 212:1–212:10. Google ScholarDigital Library
    32. Müller, M., and Chentanez, N. 2010. Wrinkle meshes. In Proceedings of the 2010 ACM SIGGRAPH/Eurographics Symposium on Computer Animation, SCA ’10, 85–92. Google ScholarDigital Library
    33. Müller, M., Heidelberger, B., Hennix, M., and Ratcliff, J. 2007. Position based dynamics. Journal of Visual Communication and Image Representation 18, 2, 109–118. Google ScholarDigital Library
    34. Narain, R., Samii, A., and O’Brien, J. F. 2012. Adaptive anisotropic remeshing for cloth simulation. ACM Trans. Graph. 31, 6, 152:1–152:10. Google ScholarDigital Library
    35. Nealen, A., Müller, M., Keiser, R., Boxerman, E., and Carlson, M. 2006. Physically based deformable models in computer graphics. Computer Graphics Forum 25, 4, 809–836.Google ScholarCross Ref
    36. Press, W. H., Teukolsky, S. A., Vetterling, W. T., and Flannery, B. P. 2007. Numerical Recipes 3rd Edition: The Art of Scientific Computing, 3 ed. Cambridge University Press. Google ScholarDigital Library
    37. Rohmer, D., Popa, T., Cani, M.-P., Hahmann, S., and Sheffer, A. 2010. Animation wrinkling: Augmenting coarse cloth simulations with realistic-looking wrinkles. ACM Trans. Graph. 29, 6, 157:1–157:8. Google ScholarDigital Library
    38. Umetani, N., Kaufman, D. M., Igarashi, T., and Grinspun, E. 2011. Sensitive couture for interactive garment modeling and editing. ACM Trans. Graph. 30, 4, 90:1–90:12. Google ScholarDigital Library
    39. Umetani, N., Igarashi, T., and Mitra, N. J. 2012. Guided exploration of physically valid shapes for furniture design. ACM Trans. Graph. 31, 4, 86:1–86:11. Google ScholarDigital Library
    40. Volino, P., Magnenat-Thalmann, N., and Faure, F. 2009. A simple approach to nonlinear tensile stiffness for accurate cloth simulation. ACM Trans. Graph. 28, 4, 105:1–105:16. Google ScholarDigital Library
    41. Wang, X. C., and Phillips, C. 2002. Multi-weight enveloping: Least-squares approximation techniques for skin animation. In Proceedings of the 2002 ACM SIGGRAPH/Eurographics Symposium on Computer Animation, ACM, New York, NY, USA, SCA ’02, 129–138. Google ScholarDigital Library
    42. Wang, R. Y., Pulli, K., and Popović, J. 2007. Real-time enveloping with rotational regression. ACM Trans. Graph. 26, 3. Google ScholarDigital Library
    43. Wang, H., Hecht, F., Ramamoorthi, R., and O’Brien, J. 2010. Example-based wrinkle synthesis for clothing animation. ACM Trans. Graph. 29, 4, 107:1–107:8. Google ScholarDigital Library
    44. Weber, O., Sorkine, O., Lipman, Y., and Gotsman, C. 2007. Context-aware skeletal shape deformation. Computer Graphics Forum (Proc. of EUROGRAPHICS) 26, 3, 265–273.Google ScholarCross Ref
    45. Whiting, E., Shin, H., Wang, R., Ochsendorf, J., and Durand, F. 2012. Structural optimization of 3d masonry buildings. ACM Trans. Graph. 31, 6, 159:1–159:11. Google ScholarDigital Library
    46. Zheng, C., and James, D. L. 2012. Energy-based self-collision culling for arbitrary mesh deformations. ACM Trans. Graph. 31, 4, 98:1–98:12. Google ScholarDigital Library
    47. Zurdo, J., Brito, J., and Otaduy, M. 2013. Animating wrinkles by example on non-skinned cloth. Visualization and Computer Graphics, IEEE Transactions on 19, 1, 149–158. Google ScholarDigital Library

ACM Digital Library Publication:

Overview Page: