“Robust fairing via conformal curvature flow” by Crane, Pinkall and Schröder

  • ©Keenan Crane, Ulrich Pinkall, and Peter Schröder




    Robust fairing via conformal curvature flow

Session/Category Title: Surfaces & Differential Geometry




    We present a formulation of Willmore flow for triangulated surfaces that permits extraordinarily large time steps and naturally preserves the quality of the input mesh. The main insight is that Willmore flow becomes remarkably stable when expressed in curvature space — we develop the precise conditions under which curvature is allowed to evolve. The practical outcome is a highly efficient algorithm that naturally preserves texture and does not require remeshing during the flow. We apply this algorithm to surface fairing, geometric modeling, and construction of constant mean curvature (CMC) surfaces. We also present a new algorithm for length-preserving flow on planar curves, which provides a valuable analogy for the surface case.


    1. Blaschke, W., and Thomsen, G. 1929. Vorlesungen über Differentialgeometrie III. Springer, Ch. Invarianten der Kreisgeometrie von Möbius, 46–91.Google Scholar
    2. Bobenko, A., and Schröder P 2005. Discrete Willmore Flow. In Proc. Symp. Geom. Proc., 101–110. Google ScholarDigital Library
    3. Bohle, C., and Pinkall, U. 2013. Conformal Deformations of Immersed Discs in R3 and Elliptic Boundary Value Problems. ArXiv e-prints (Jan.).Google Scholar
    4. Botsch, M., and Kobbelt, L. 2004. A Remeshing Approach to Multiresolution Modeling. In Proc. Symp. Geom. Proc., 185–192. Google ScholarDigital Library
    5. Bouaziz, S., Deuss, M., Schwartzburg, Y., Weise, T., and Pauly, M. 2012. Shape-Up: Shaping Discrete Geometry with Projections. Comp. Graph. Forum 31, 5, 1657–1667. Google ScholarDigital Library
    6. Brakke, K. 1992. The Surface Evolver. Experiment Math. 1, 2, 141–165.Google ScholarCross Ref
    7. Canham, P. B. 1970. The Minimum Energy of Bending as a Possible Explanation of the Biconcave Shape of the Human Red Blood Cell. J. Th. Bio. 26, 1, 61–81.Google ScholarCross Ref
    8. Celniker, G., and Gossard, D. 1991. Deformable Curve and Surface Finite-Elements for Free-Form Shape Design. Comp. Graph. (Proc. of ACM/SIGGRAPH Conf.) 25, 4, 257–266. Google ScholarDigital Library
    9. Chen, Y., Davis, T. A., Hager, W. W., and Rajamanickam, S. 2008. CHOLMOD, Supernodal Sparse Cholesky Factorization and Update/Downdate. ACM Trans. Math. Softw. 35. Google ScholarDigital Library
    10. Clarenz, U., Diewald, U., Dziuk, G., Rumpf, M., and Rusu, R. 2004. A Finite Element Method for Surface Restoration with Smooth Boundary Conditions. Comput. Aided Geom. Des. 21, 5, 427–445. Google ScholarDigital Library
    11. Colding, T. H., and MiNicozzi, II, W. P. 2012. Generic Mean Curvature Flow I; Generic Singularities. Ann. Math. 175, 2, 755–833.Google ScholarCross Ref
    12. Crane, K., Pinkall, U., and Schröder, P. 2011. Spin Transformations of Discrete Surfaces. ACM Trans. Graph. 30, 4, 104:1–104:10. Google ScholarDigital Library
    13. Crane, K., 2012. SpinXForm. http://multires.caltech.edu/~keenan/project_spinxform.html#sourcecode.Google Scholar
    14. Crane, K. 2013. Conformal Geometry Processing. PhD thesis, Caltech.Google Scholar
    15. deGoes, F., Goldenstein, S., and Velho, L. 2008. A Simple and Flexible Framework to adapt Dynamic Meshes. Comp. & Graph. 32, 2, 141–148. Google ScholarDigital Library
    16. Desbrun, M., Meyer, M., Schröder, P., and Barr A. 1999. Implicit Fairing of Irregular Meshes using Diffusion and Curvature Flow. In Proc. ACM/SIGGRAPH Conf., 317–324. Google ScholarDigital Library
    17. Desbrun, M., Kanso, E., and Tong, Y 2008. Discrete Differential Forms for Computational Modeling. In Discrete Differential Geometry, A. I. Bobenko, P. Schröder, J. M. Sullivan, and G. M. Ziegler, Eds., Vol. 38 of Oberwolfach Seminars. Birkhäuser Verlag, 287–324.Google Scholar
    18. Eckstein, I., Pons, J.-P., Tong, Y., Kuo, C. J., and Desbrun, M. 2007. Generalized Surface Fows for Mesh Processing. In Proc. Symp. Geom. Proc., 183–192. Google ScholarDigital Library
    19. Gu, X., Zeng, W., Luo, F., and Yau, S.-T. 2011. Numerical Computation of Surface Conformal Mappings. Comp. Meth. & Fun. Theory. 11, 2, 747–787.Google ScholarCross Ref
    20. Helfrich, W. 1973. Elastic Properties of Lipid Bilayers: Theory and Possible Experiments. Z. Naturf. C 28, 11, 693–703.Google ScholarCross Ref
    21. Kamberoy G., Pedit, F., and Pinkall, U. 1998. Bonnet Pairs and Isothermic Surfaces. Duke Math. J. 92, 3, 637–644.Google ScholarCross Ref
    22. Kamberoy G., Norman, P., Pedit, F., and Pinkall, U. 2002. Quaternions, Spinors and Surfaces, Vol. 299 of Contemp. Math. AMS.Google Scholar
    23. Kazhdan, M., Solomon, J., and Ben-Chen, M. 2012. Can Mean-Curvature Flow Be Made Non-Singular? Comp. Graph. Forum 31, 5, 1745–1754. Google ScholarDigital Library
    24. Olischläger, N, and Rumpf, M. 2009. Two Step Time Discretization of Willmore Flow. In Mathematics of Surfaces XIII, Vol. 5654/2009 of Lect N. in Comp. Sc. Springer, 278–292. Google ScholarDigital Library
    25. Pan, H., Choi, Y.-K., Liu, Y., Hu, W., Du, Q., Polthier K., Zhang, C., and Wang, W. 2012. Robust Modeling of Constant Mean Curvature Surfaces. ACM Trans. Graph. 31, 4. Google ScholarDigital Library
    26. Pinkall, U., and Sterling, I. 1987. Willmore Surfaces. Math. Intell. 9, 2, 38–43.Google ScholarCross Ref
    27. Sander P. V., Snyder J., Gortler S. J., and Hoppe, H. 2001. Texture Mapping Progressive Meshes. In Proc. ACM/SIGGRAPH Conf., 409–416. Google ScholarDigital Library
    28. Schneider R., and Kobbelt, L. 2001. Geometric Fairing of Irregular Meshes for Free-From Surface Design. Comput. Aided Geom. Des. 18, 4, 359–379. Google ScholarDigital Library
    29. Taubin, G. 1995. A Signal Processing Approach to Fair Surface Design. In Proc. ACM/SIGGRAPH Conf., 351–358. Google ScholarDigital Library
    30. Wardetzky, M., Bergou, M., Harmon, D., Zorin, D., and Grinspun, E. 2007. Discrete Quadratic Curvature Energies. Comput. Aided Geom. Des. 24, 8–9, 499–518. Google ScholarDigital Library
    31. Welch, W., and Witkin, A. 1994. Free-Form Shape Design Using Triangulated Surfaces. Comp. Graph. (Proc. of ACM/SIGGRAPH Conf.) 28, 247–256. Google ScholarDigital Library
    32. Yoshizawa, S., and Belyaev, A. G. 2002. Fair Triangle Mesh Generation with Discrete Elastica. In Geo. Mod. & Proc., 119–123. Google ScholarDigital Library

ACM Digital Library Publication:

Overview Page: