“RFIG lamps: interacting with a self-describing world via photosensing wireless tags and projectors” by Raskar, Beardsley, van Baar, Wang, Dietz, et al. …

  • ©Ramesh Raskar, Paul Beardsley, Jeroen van Baar, Yao Wang, Paul H. Dietz, Johnny Lee, Darren Leigh, and Thomas Willwacher




    RFIG lamps: interacting with a self-describing world via photosensing wireless tags and projectors



    This paper describes how to instrument the physical world so that objects become self-describing, communicating their identity, geometry, and other information such as history or user annotation. The enabling technology is a wireless tag which acts as a radio frequency identity and geometry (RFIG) transponder. We show how addition of a photo-sensor to a wireless tag significantly extends its functionality to allow geometric operations – such as finding the 3D position of a tag, or detecting change in the shape of a tagged object. Tag data is presented to the user by direct projection using a handheld locale-aware mobile projector. We introduce a novel technique that we call interactive projection to allow a user to interact with projected information e.g. to navigate or update the projected information.The ideas are demonstrated using objects with active radio frequency (RF) tags. But the work was motivated by the advent of unpowered passive-RFID, a technology that promises to have significant impact in real-world applications. We discuss how our current prototypes could evolve to passive-RFID in the future.


    1. ABELSON, H., ALLEN, D., COORE, D., HANSON, C., HOMSY, G., KNIGHT, T., NAGPAL, R., RAUCH, E., SUSSMAN, G., AND WEISS., R. 2000. Amorphous computing. In Communications of the ACM, vol. 43(5), 74–82. Google ScholarDigital Library
    2. AZUMA, R., BAILLOT, Y., BEHRINGER, R., FEINER, S., JULIER, S., AND MACINTYRE, B. 2001. Recent Advances in Augmented Reality. In IEEE Computer Graphics and Applications, vol. 21(6), 34–47. Google ScholarDigital Library
    3. BEARDSLEY, P., RASKAR, R., FORLINES, C., AND VANBAAR, J. 2004. Interactive Projection. TR 2004/042, MERL.Google Scholar
    4. BEARDSLEY, P., VANBAAR, J., AND RASKAR, R. 2004. Augmenting a Projector-Camera Device with Laser Pointers. TR 2004/035, MERL.Google Scholar
    5. BIMBER, O., FROLICH, B., SCHMALSTIEG, D., AND ENCARNARO, L. M. 2001. The Virtual Showcase. IEEE Comput. Graph. Appl. 21, 6, 48–55. Google ScholarDigital Library
    6. CANESTA, 2002. Miniature Laser Projector Keyboard. http://www.canesta.com.Google Scholar
    7. FISCHLER, M. A., AND BOLLES, R. C. 1981. Random Sample Consensus: a paradigm for model fitting with application to image analysis and automated cartography. Commun. Assoc. Comp. Mach. vol. 24, 381–95. Google ScholarDigital Library
    8. FOXLIN, E., AND NAIMARK, M. 2002. Shadow Effects of Virtual Objects on Real Surfaces with a Handheld Projector. Unpublished.Google Scholar
    9. HARTLEY, R., AND ZISSERMAN, A. 2000. Multiple View Geometry in Computer Vision. Cambridge University Press. Google ScholarDigital Library
    10. HINCKLEY, K., PIERCE, J., SINCLAR, M., AND HORVITZ, E. 2000. Sensing Techniques for Mobile Interaction. In ACM UIST CHI Letters, vol. 2(2), 91–100. Google ScholarDigital Library
    11. HOLMQUIST, L. E., MATTERN, F., SCHIELE, B., ALAHUHTA, P., BEIGL, M., AND GELLERSEN, H.-W. 2001. Smart-Its Friends: A Technique for Users to Easily Establish Connections between Smart Artefacts. In Ubicomp, Springer-Verlag LNCS 2201, 273–291. Google ScholarDigital Library
    12. LUMILEDS, 2003. (Bright LEDs). http://lumileds.com.Google Scholar
    13. MA, H., AND PARADISO, J. A. 2002. The FindIT Flashlight: Responsive Tagging Based on Optically Triggered Microprocessor Wakeup. In Ubicomp, 160–167. Google ScholarDigital Library
    14. MOORE, D. J., WANT, R., ANDET AL. 1999. Implementing Phicons: Combining Computer Vision with InfraRed Technology for Interactive Physical Icons. In Proceedings of ACM UIST’99, 67–68. Google ScholarDigital Library
    15. NAYAR, S. K., PERI, H., GROSSBERG, M. D., AND BELHUMEUR, P. N. 2003. A Projection System with Radiometric Compensation for Screen Imperfections. In Proc. ICCV Workshop on Projector-Camera Systems (PROCAMS).Google Scholar
    16. OMOJOLA, O., POST, E. R., HANCHER, M. D., MAGUIRE, Y., PAPPU, R., SCHONER, B., RUSSO, P. R., FLETCHER, R., AND GERSHENFELD, N. 2000. An installation of interactive furniture. In IBM Systems Journal, vol. 39(3,4). Google ScholarDigital Library
    17. PATEL, S. N., AND ABOWD, G. D. 2003. A 2-Way Laser-Assisted Selection Scheme for Handhelds in a Physical Environment. In Ubicomp, 200–207.Google Scholar
    18. PATTEN, J., ISHII, H., AND PANGARO, G. 2001. Sensetable: A Wireless Object Tracking Platform for Tangible User Interfaces. In Conference on Human Factors in Computing Systems (ACM CHI). Google ScholarDigital Library
    19. PINHANEZ, C. 2001. The Everywhere Displays Projector: A Device to Create Ubiquitous Graphical Interfaces. In Ubiquitous Computing 2001 (Ubicomp’01). Google ScholarDigital Library
    20. RASKAR, R., WELCH, G., AND FUCHS, H. 1998. Spatially Augmented Reality. In The First IEEE International Workshop on Augmented Reality (IWAR).Google Scholar
    21. RASKAR, R., WELCH, G., LOW, K.-L., AND BANDYOPADHYAY, D. 2001. Shader Lamps: Animating Real Objects With Image-Based Illumination. In Rendering Techniques 2001, Proceedings of the Eurographics Workshop in London, United Kingdom. Google ScholarDigital Library
    22. RASKAR, R., VAN BAAR, J., BEARDSLEY, P., WILLWACHER, T., RAO, S., AND FORLINES, C. 2003. iLamps: Geometrically Aware and Self-configuring Projectors. ACM Trans. Graph. (SIGGRAPH) 22, 3, 809–818. Google ScholarDigital Library
    23. REKIMOTO, J., ULLMER, B., AND OBA, H. 2001. DataTiles: A Modular Platform for Mixed Physical and Graphical Interactions. In CHI 2001. Google ScholarDigital Library
    24. RINGWALD, M. 2002. Spontaneous Interaction with Everyday Devices Using a PDA Workshop on Supporting Spontaneous Interaction in Ubiquitous Computing Settings. In UbiComp.Google Scholar
    25. SIEMENS, 2002. Siemens Mini Beamer. http://w4.siemens.de/en2/html/press//newsdesk_archive/2002/foe02121b.html.Google Scholar
    26. SYMBOL, 2002. Laser Projection Display. http://www.symbol.com/products/oem/lpd.html.Google Scholar
    27. TELLER, S., CHEN, J., AND BALAKRISHNAN, H. 2003. Pervasive pose-aware applications and infrastructure. IEEE Computer Graphics and Applications (Jul). Google ScholarDigital Library
    28. THE COOLTOWN PROJECT, 2001. http://www.cooltown.com/research/.Google Scholar
    29. UNDERKOFFLER, J., ULLMER, B., AND ISHII, H. 1999. Emancipated pixels: Real-world graphics in the luminous room. In Proc. Siggraph 99, ACM Press, 385–392. Google ScholarDigital Library
    30. VERLINDEN, J. C., DE SMIT, A., PEETERS, A. W. J., AND VAN GELDEREN, M. H. 2003. Development of a Flexible Augmented Prototyping System. In The 11th International Conference in Central Europe on Computer Graphics, Visualization and Computer Vision’2003.Google Scholar
    31. WANT, R., HOPPER, A., FALCO, V., AND GIBBONS, J. 1992. The Active Badge Location System. ACM Trans. Inf. Syst. 10, 1, 91–102. Google ScholarDigital Library
    32. WANT, R., SCHILIT, B. N., ADAMS, N. I., GOLD, R., PETERSEN, K., GOLDBERG, D., ELLIS, J. R., AND WEISER, M. 1995. An Overview of the ParcTab Ubiquitous Computing Experiment. In IEEE Personal Communications, 28–43.Google Scholar
    33. WANT, R., HARRISON, B. L., FISHKIN, K., AND GUJAR, A. 1999. Bridging Physical and Virtual Worlds with Electronic Tags. In ACM SIGCHI, 370–377. Google ScholarDigital Library
    34. WANT, R. 2003. RFID, A Key to Automating Everything. In Scientific American, vol. 290(1), 56–65.Google ScholarCross Ref
    35. ZHANG, Z. 1999. A Flexible New Technique for Camera Calibration. IEEE Pattern Analysis and Machine Intelligence 22, 1330–1334. Google ScholarDigital Library

ACM Digital Library Publication: