“Reflectance scanning: estimating shading frame and BRDF with generalized linear light sources” by Chen, Dong, Peers, Zhang and Tong

  • ©Guojun Chen, Yue Dong, Pieter Peers, Jiawan Zhang, and Xin Tong




    Reflectance scanning: estimating shading frame and BRDF with generalized linear light sources

Session/Category Title:   Reflectance: Modeling, Capturing, Renderings




    We present a generalized linear light source solution to estimate both the local shading frame and anisotropic surface reflectance of a planar spatially varying material sample.We generalize linear light source reflectometry by modulating the intensity along the linear light source, and show that a constant and two sinusoidal lighting patterns are sufficient for estimating the local shading frame and anisotropic surface reflectance. We propose a novel reconstruction algorithm based on the key observation that after factoring out the tangent rotation, the anisotropic surface reflectance lies in a low rank subspace. We exploit the differences in tangent rotation between surface points to infer the low rank subspace and fit each surface point’s reflectance function in the projected low rank subspace to the observations. We propose two prototype acquisition devices for capturing surface reflectance that differ on whether the camera is fixed with respect to the linear light source or fixed with respect to the material sample.We demonstrate convincing results obtained from reflectance scans of surfaces with different reflectance and shading frame variations.


    1. Aittala, M., Weyrich, T., and Lehtinen, J. 2013. Practical SVBRDF capture in the frequency domain. ACM Trans. Graph. 32, 4. Google ScholarDigital Library
    2. Alldrin, N., Zickler, T. E., and Kriegman, D. 2008. Photometric stereo with non-parametric and spatially-varying reflectance. In CVPR, 1–8. Google ScholarDigital Library
    3. Ben-Ezra, M., Wang, J., Wilburn, B., Li, X., and Ma, L. 2008. An LED-only BRDF measurement device. In CVPR, 1–8. Google ScholarDigital Library
    4. Cai, J.-F., Candès, E. J., and Shen, Z. 2010. A Singular Value Thresholding Algorithm for Matrix Completion. SIAM J. on Optimization 20, 4, 1956–1982. Google ScholarDigital Library
    5. Cook, R. L., and Torrance, K. E. 1982. A reflectance model for computer graphics. ACM Trans. Graph. 1, 1, 7–24. Google ScholarDigital Library
    6. Dana, K. J., Nayar, S. K., van Ginneken, B., and Koenderink, J. J. 1999. Reflectance and texture of real-world surfaces. ACM Trans. Graph. 18, 1, 1–34. Google ScholarDigital Library
    7. Dong, Y., Wang, J., Tong, X., Snyder, J., Lan, Y., Ben-Ezra, M., and Guo, B. 2010. Manifold bootstrapping for svbrdf capture. ACM Trans. Graph. 29, 4, 98:1–98:10. Google ScholarDigital Library
    8. Gardner, A., Tchou, C., Hawkins, T., and Debevec, P. 2003. Linear light source reflectometry. ACM Trans. Graph. 22, 3, 749–758. Google ScholarDigital Library
    9. Ghosh, A., Chen, T., Peers, P., Wilson, C. A., and Debevec, P. E. 2009. Estimating specular roughness and anisotropy from second order spherical gradient illumination. Computer Graphics Forum 28, 4, 1161–1170. Google ScholarDigital Library
    10. Goldman, D. B., Curless, B., Hertzmann, A., and Seitz, S. M. 2005. Shape and spatially-varying BRDFs from photometric stereo. In ICCV, I: 341–348. Google ScholarDigital Library
    11. Han, J. Y., and Perlin, K. 2003. Measuring bidirectional texture reflectance with a kaleidoscope. ACM Trans. Graph. 22, 3, 741–748. Google ScholarDigital Library
    12. Holroyd, M., Lawrence, J., Humphreys, G., and Zickler, T. 2008. A photometric approach for estimating normals and tangents. ACM Trans. Graph. 27, 5, 133:1–133:9. Google ScholarDigital Library
    13. Lafortune, E. P. F., Foo, S.-C., Torrance, K. E., and Greenberg, D. P. 1997. Non-linear approximation of reflectance functions. In Proceedings of ACM SIGGRAPH 1997, Annual Conference Series, 117–126. Google ScholarDigital Library
    14. Lawrence, J., Ben-Artzi, A., DeCoro, C., Matusik, W., Pfister, H., Ramamoorthi, R., and Rusinkiewicz, S. 2006. Inverse shade trees for non-parametric material representation and editing. ACM Trans. Graph. 25, 3. Google ScholarDigital Library
    15. Lensch, H. P. A., Kautz, J., Goesele, M., Heidrich, W., and Seidel, H.-P. 2003. Image-based reconstruction of spatial appearance and geometric detail. ACM Trans. Graph. 22, 2, 234–257. Google ScholarDigital Library
    16. Liu, G., Lin, Z., Yan, S., Sun, J., Yu, Y., and Ma, Y. 2013. Robust Recovery of Subspace Structures by Low-Rank Representation. IEEE PAMI 35, 171–184. Google ScholarDigital Library
    17. Lu, R., Koenderink, J. J., and Kappers, A. M. L. 1998. Optical properties bidirectional reflectance distribution functions of velvet. Applied Optics 37, 25 (Sept.), 5974–5984.Google ScholarCross Ref
    18. Ma, W.-C., Hawkins, T., Peers, P., Chabert, C.-F., Weiss, M., and Debevec, P. E. 2007. Rapid acquisition of specular and diffuse normal maps from polarized spherical gradient illumination. In Rendering Techniques, 183–194. Google ScholarDigital Library
    19. Marschner, S., Westin, S., Lafortune, E., Torrance, K., and Greenberg, D. 1999. Image-based BRDF measurement including human skin. In 10th Eurographics Rendering Workshop. Google ScholarDigital Library
    20. Matusik, W., Pfister, H., Brand, M., and McMillan, L. 2003. Efficient isotropic BRDF measurement. In Rendering Techniques, 241–247. Google ScholarDigital Library
    21. Mukaigawa, Y., sumino, K., and yagi, Y. 2007. High-speed measurement of BRDF using an ellipsoidal mirror and a projector. In ACCV, 246–257.Google Scholar
    22. Ngan, A., Durand, F., and Matusik, W. 2005. Experimental analysis of BRDF models. Eurographics Symposium on Rendering 2005, 117–226. Google ScholarDigital Library
    23. Nicodemus, F. E., Richmond, J. C., Hsia, J. J., Ginsberg, I. W., and Limperis, T. 1977. Geometric considerations and nomenclature for reflectance. Monograph 161,National Bureau of Standards (US).Google Scholar
    24. Nocedal, J., and Wright, S. J. 2006. Numerical Optimization. Springer Series in Operations Research and Financial Enginee. Springer Science+Business Media, LLC.Google Scholar
    25. Ren, P., Wang, J., Snyder, J., Tong, X., and Guo, B. 2011. Pocket reflectometry. ACM Trans. Graph. 30, 4, 45:1–45:10. Google ScholarDigital Library
    26. Tunwattanapong, B., Fyffe, G., Graham, P., Busch, J., Yu, X., Ghosh, A., and Debevec, P. E. 2013. Acquiring reflectance and shape from continuous spherical harmonic illumination. ACM Trans. Graph. 32, 4, 109. Google ScholarDigital Library
    27. Wang, J., Zhao, S., Tong, X., Snyder, J., and Guo, B. 2008. Modeling anisotropic surface reflectance with example-based microfacet synthesis. ACM Trans. Graph 27, 3, 41:1–41:9. Google ScholarDigital Library
    28. Ward, G. J. 1992. Measuring and modeling anisotropic reflection. In Computer Graphics, vol. 26, 265–272. Google ScholarDigital Library
    29. Zhang, Z. 2000. A flexible new technique for camera calibration. In IEEE PAMI, vol. 22, 1330–1334. Google ScholarDigital Library
    30. Zickler, T., Enrique, S., Ramamoorthi, R., and Belhumeur, P. 2005. Reflectance sharing: image-based rendering from a sparse set of images. In Rendering Techniques, 253–264. Google ScholarDigital Library

ACM Digital Library Publication:

Overview Page: