“Reconciling Elastic and Equilibrium Methods for Static Analysis” by Shin, Vouga, Ochsendorf and Durand

  • ©Hijung Shin, Etienne Vouga, John Ochsendorf, and Frédo Durand




    Reconciling Elastic and Equilibrium Methods for Static Analysis





    We examine two widely used classes of methods for static analysis of masonry buildings: linear elasticity analysis using finite elements and equilibrium methods. It is often claimed in the literature that finite element analysis is less accurate than equilibrium analysis when it comes to masonry analysis; we examine and qualify this claimed inaccuracy, provide a systematic explanation for the discrepancy observed between their results, and present a unified formulation of the two approaches to stability analysis. We prove that both approaches can be viewed as equivalent, dual methods for getting the same answer to the same problem. We validate our observations with simulations and physical tilt experiments of structures.


    1. Autodesk. 2014. Robot Structural Analysis Professional. (November 2014). http://www.autodesk.com/products/robot-structural-analysis/overview.
    2. David Baraff. 1993. Non-penetrating rigid body simulation. In Eurographics 93 State of the Art Report, J. Fagerberg, D. C. Mowery, and R. R. Nelson (Eds.). Eurographics Association.
    3. Klaus-Jürgen Bathe. 2006. Finite Element Procedures. Klaus-Jurgen Bathe.
    4. Philippe Block, Thierry Ciblac, and John Ochsendorf. 2006. Real-time limit analysis of vaulted masonry buildings. Computers & Structures 84, 29 (2006), 1841–1852.
    5. Philippe Block and John Ochsendorf. 2007. Thrust network analysis: A new methodology for three-dimensional equilibrium. Journal of the International Association for Shell and Spatial Structures 48, 3 (2007), 167–173.
    6. Philippe Philippe Camille Vincent Block. 2009. Thrust Network Analysis: Exploring Three-Dimensional Equilibrium. Ph.D. Dissertation. Massachusetts Institute of Technology.
    7. Sandro Brasile, Raffaele Casciaro, and Giovanni Formica. 2007. Multilevel approach for brick masonry walls–Part I: A numerical strategy for the nonlinear analysis. Computer Methods in Applied Mechanics and Engineering 196, 49 (2007), 4934–4951.
    8. Jaime Cervera Bravo, Jose Ignacio Hernando Garcia, and Juan Francisco De La Torre Calvo. 1994. Acueducto de Segovia Comportamiento Mecanico. Technical Report. Universidad Politecnica de Madrid.
    9. Philip Brune and Renato Perucchio. 2012. Roman concrete vaulting in the great hall of Trajans markets: Structural evaluation. Journal of Architectural Engineering 18, 4 (2012), 332–340.
    10. Xiang Chen, Changxi Zheng, Weiwei Xu, and Kun Zhou. 2014. An asymptotic numerical method for inverse elastic shape design. ACM Transactions on Graphics (In Proceedings of SIGGRAPH 2014) 33, 4 (Aug. 2014). 
    11. Computers and Structures, Inc. 2014. SAP2000. (June 2014). http://www.csiamerica.com/products/sap2000.
    12. Stelian Coros, Sebastian Martin, Bernhard Thomaszewski, Christian Schumacher, Robert Sumner, and Markus Gross. 2012. Deformable objects alive! ACM Transactions on Graphics 31, 4, Article 69 (July 2012), 9 pages. DOI:http://dx.doi.org/10.1145/2185520.2185565 
    13. P. A. Cundall. 1971. A computer model for simulating progressive, large-scale movements in blocky rock systems. In Proceedings of the Symposium of the International Society of Rock Mechanics. Vol. 2. Nancy.
    14. Dassault Système. 2014. Abaqus Unified FEA. (June 2014). http://www.3ds. com/products-services/simulia/portfolio/abaqus/overview/.
    15. Fernando de Goes, Pierre Alliez, Houman Owhadi, Mathieu Desbrun, and others. 2013. On the equilibrium of simplicial masonry structures. ACM Transactions on Graphics 32, 4 (2013), 93:1–93:10. 
    16. Matthew J. DeJong. 2009. Seismic Assessment Strategies for Masonry Structures. Ph.D. Dissertation. Massachusetts Institute of Technology, Department of Architecture.
    17. Mario Deuss, Daniele Panozzo, Emily Whiting, Yang Liu, Philippe Block, Olga Sorkine-Hornung, and Mark Pauly. 2014. Assembling self-supporting structures. ACM Transactions on Graphics (SIGGRAPH ASIA) (2014). 
    18. John Dolbow and T. Belytschko. 1999. A finite element method for crack growth without remeshing. International Journal of Numerical Methods in Engineering 46, 1 (1999), 131–150.
    19. Kenny Erleben. 2007. Velocity-based shock propagation for multibody dynamics animation. ACM Transactions on Graphics (TOG) 26, 2 (2007), 12. 
    20. Fernando Fraternali. 2010. A thrust network approach to the equilibrium problem of unreinforced masonry vaults via polyhedral stress functions. Mechanics Research Communications 37, 2 (2010), 198–204.
    21. Eran Guendelman, Robert Bridson, and Ronald Fedkiw. 2003. Nonconvex rigid bodies with stacking. In ACM Transactions on Graphics (TOG), Vol. 22. ACM, 871–878. 
    22. John C. Hart, Brent Baker, and Jeyprakash Michaelraj. 2003. Structural simulation of tree growth and response. The Visual Computer 19, 2–3 (2003), 151–163.
    23. Jacques Heyman. 1966. The stone skeleton. International Journal of Solids and Structures 2 (1966), 249–279.
    24. Jacques Heyman. 1995. The Stone Skeleton: Structural Engineering of Masonry Architecture. Cambridge University Press.
    25. Jacques Heyman. 1996. Elements of the Theory of Structures. Cambridge University Press.
    26. Shu-Wei Hsu and John Keyser. 2012. Automated constraint placement to maintain pile shape. ACM Transactions on Graphics (TOG) 31, 6 (2012), 150. 
    27. Santiago Huerta. 2001. Mechanics of masonry vaults: The equilibrium approach. Universidade do Minho (2001).
    28. Santiago Huerta. 2008. The analysis of masonry architecture: A historical approach: To the memory of professor Henry J. Cowan. Architectural Science Review 51, 4 (2008), 297–328.
    29. Danny M. Kaufman, Shinjiro Sueda, Doug L. James, and Dinesh K. Pai. 2008. Staggered projections for frictional contact in multibody systems. In ACM Transactions on Graphics (TOG), Vol. 27. ACM, 164. 
    30. Yang Liu, Hao Pan, John Snyder, Wenping Wang, and Baining Guo. 2013. Computing self-supporting surfaces by regular triangulation. ACM Transactions on Graphics 32, 4 (July 2013), 92. 
    31. R. K. Livesley. 1978. Limit analysis of structures formed from rigid blocks. International Journal of Numerical Methods in Engineering 12 (1978), 1853–1871.
    32. Paulo B. Lourenço, Jan G. Rots, and Johan Blaauwendraad. 1998. Continuum model for masonry: Parameter estimation and validation. Journal of Structural Engineering 124, 6 (1998), 642–652.
    33. Robert Mark. 1982. Experiments in Gothic Structure. Vol. 11. MIT Press, Cambridge, MA.
    34. Sebastian Martin, Peter Kaufmann, Mario Botsch, Eitan Grinspun, and Markus Gross. 2010. Unified simulation of elastic rods, shells, and solids. ACM Transactions on Graphics 29, 4 (2010), 39:1–39:10. 
    35. G. Thomas Mase, Ronald E. Smelser, and George E. Mase. 2009. Continuum Mechanics for Engineers. CRC Press.
    36. Matthias Müller, Jos Stam, Doug James, and Nils Thürey. 2008. Real time physics: Class notes. In ACM SIGGRAPH 2008 classes. ACM, 88. 
    37. Rahul Narain, Abhinav Golas, and Ming C. Lin. 2010. Free-flowing granular materials with two-way solid coupling. In ACM Transactions on Graphics (TOG), Vol. 29. ACM, 173. 
    38. John Ochsendorf. 2002. Collapse of Masonry Structures. Ph.D. Dissertation. University of Cambridge.
    39. Paul Painlevé. 1895. Sur les lois du frottement de glissement. Comptes Rendus Academie des Sciences Paris 121, 112–115.
    40. Daniele Panozzo, Philippe Block, and Olga Sorkine-Hornung. 2013. Designing unreinforced masonry models. ACM Transactions on Graphics (In Proceedings of ACM SIGGRAPH) 32, 4 (2013), 91:1–91:12. 
    41. Romain Prévost, Emily Whiting, Sylvain Lefebvre, and Olga Sorkine-Hornung. 2013. Make it stand: Balancing shapes for 3D fabrication. ACM Transactions on Graphics (In Proceedings of ACM SIGGRAPH) 32, 4 (2013), 81:1–81:10. 
    42. Pere Roca, Miguel Cervera, Giuseppe Gariup, and others. 2010. Structural analysis of masonry historical constructions. Classical and advanced approaches. Archives of Computational Methods in Engineering 17, 3 (2010), 299–325.
    43. Xiaohan Shi, Kun Zhou, Yiying Tong, Mathieu Desbrun, Hujun Bao, and Baining Guo. 2007. Mesh puppetry: Cascading optimization of mesh deformation with inverse kinematics. ACM Transactions on Graphics 26, 3 (2007), 81. http://doi.acm.org/10.1145/1276377.1276479. 
    44. Eftychios Sifakis and Jernej Barbic. 2012. FEM simulation of 3D deformable solids: A practitioner’s guide to theory, discretization and model reduction. In ACM SIGGRAPH 2012 Courses. ACM, 20. 
    45. Jeffrey Smith, Jessica K. Hodgins, Irving Oppenheim, and Andrew Witkin. 2002. Creating models of truss structures with optimization. In Proceedings of SIGGRAPH 2002 (Computer Graphics Proceedings, Annual Conference Series), John Hughes (Ed.). ACM, ACM Press / ACM SIGGRAPH, 295–301. 
    46. Ondrej Stava, Juraj Vanek, Bedrich Benes, Nathan Carr, and Radomír Měch. 2012. Stress relief: Improving structural strength of 3D printable objects. ACM Transactions on Graphics 31, 4, Article 48 (July 2012), 11 pages. DOI:http://dx.doi.org/10.1145/2185520.2185544 
    47. Demetri Terzopoulos and Kurt Fleischer. 1988. Modeling inelastic deformation: Viscolelasticity, plasticity, fracture. SIGGRAPH Computer Graphics 22, 4 (June 1988), 269–278. DOI:http://dx.doi.org/10.1145/378456.378522 
    48. Demetri Terzopoulos, John Platt, Alan Barr, and Kurt Fleischer. 1987. Elastically deformable models. SIGGRAPH Computer Graphics 21, 4 (Aug. 1987), 205–214. DOI:http://dx.doi.org/10.1145/37402.37427 
    49. Nobuyuki Umetani, Takeo Igarashi, and Niloy J. Mitra. 2012. Guided exploration of physically valid shapes for furniture design. ACM Transactions on Graphics 31, 4 (2012), 86. 
    50. Nobuyuki Umetani, Kenshi Takayama, Jun Mitani, and Takeo Igarashi. 2010. Responsive FEM for aiding interactive geometric modeling. IEEE Computer Graphics and Applications 99 (2010), 43–53. 
    51. E. Vouga, Mathias Höbinger, Johannes Wallner, and Helmut Pottmann. 2012. Design of self-supporting surfaces. ACM Transactions on Graphics 31, 3 (2012), 87:1–87:11. 
    52. Emily Whiting, John Ochsendorf, and Frédo Durand. 2009. Procedural modeling of structurally-sound masonry buildings. ACM Transactions on Graphics 28, 5 (2009), 112. 
    53. Emily Whiting, Hijung Shin, Robert Wang, John Ochsendorf, and Frédo Durand. 2012. Structural optimization of 3D masonry buildings. ACM Transactions on Graphics 31, 6 (2012), 159:1–159:11. 
    54. Emily Jing Wei Whiting. 2012. Design of Structurally-Sound Masonry Buildings Using 3D Static Analysis. Ph.D. Dissertation. Massachusetts Institute of Technology.
    55. Weiwei Xu, Jun Wang, KangKang Yin, Kun Zhou, Michiel van de Panne, Falai Chen, and Baining Guo. 2009. Joint-aware manipulation of deformable models. ACM Transactions on Graphics 28, 3, Article 35 (July 2009), 9 pages. DOI:http://dx.doi.org/10.1145/1531326.1531341 
    56. Jennifer Furstenau Zessin. 2012. Collapse Analysis of Unreinforced Masonry Domes and Curving Walls. Ph.D. Dissertation. Massachusetts Institute of Technology.
    57. Qingnan Zhou, Julian Panetta, and Denis Zorin. 2013. Worst-case structural analysis. ACM Transactions on Graphics 32, 4, Article 137 (July 2013), 12 pages. DOI:http://dx.doi.org/10.1145/2461912.2461967 

ACM Digital Library Publication:

Overview Page: