“Real-time gradient-domain painting” by McCann and Pollard

  • ©

Conference:


Type(s):


Title:

    Real-time gradient-domain painting

Presenter(s)/Author(s):



Abstract:


    We present an image editing program which allows artists to paint in the gradient domain with real-time feedback on megapixel-sized images. Along with a pedestrian, though powerful, gradient-painting brush and gradient-clone tool, we introduce an edge brush designed for edge selection and replay. These brushes, coupled with special blending modes, allow users to accomplish global lighting and contrast adjustments using only local image manipulations — e.g. strengthening a given edge or removing a shadow boundary. Such operations would be tedious in a conventional intensity-based paint program and hard for users to get right in the gradient domain without real-time feedback. The core of our paint program is a simple-to-implement GPU multigrid method which allows integration of megapixel-sized full-color gradient fields at over 20 frames per second on modest hardware. By way of evaluation, we present example images produced with our program and characterize the iteration time and convergence rate of our integration method.

References:


    1. Agarwala, A. 2007. Efficient gradient-domain compositing using quadtrees. ACM Transactions on Graphics 26, 3. Google ScholarDigital Library
    2. Agrawal, A., and Raskar, R., 2007. Gradient domain manipulation techniques in vision and graphics. ICCV 2007 Course.Google Scholar
    3. Bolz, J., Farmer, I., Grinspun, E., and Schröoder, P. 2003. Sparse matrix solvers on the GPU: conjugate gradients and multigrid. ACM Transactions on Graphics 22, 3, 917–924. Google ScholarDigital Library
    4. Burt, P. J., and Adelson, E. H. 1983. A multiresolution spline with application to image mosaics. ACM Transactions on Graphics 2, 4, 217–236. Google ScholarDigital Library
    5. Elder, J. H., and Goldberg, R. M. 2001. Image editing in the contour domain. IEEE Transactions on Pattern Analysis and Machine Intelligence 23, 3, 291–296. Google ScholarDigital Library
    6. Fattal, R., Lischinski, D., and Werman, M. 2002. Gradient domain high dynamic range compression. ACM Transactions on Graphics 21, 3, 249–256. Google ScholarDigital Library
    7. Finlayson, G., Hordley, S., and Drew, M. 2002. Removing shadows from images. In ECCV 2002. Google ScholarDigital Library
    8. Goodnight, N., Woolley, C., Lewin, G., Luebke, D., and Humphreys, G. 2003. A multigrid solver for boundary value problems using programmable graphics hardware. In HWWS ’03, 102–111. Google ScholarDigital Library
    9. Kazhdan, M., and Hoppe, H. 2008. Streaming multigrid for gradient-domain operations on large images. ACM Transactions on Graphics 27, 3. Google ScholarDigital Library
    10. Land, E. H., and McCann, J. J. 1971. Lightness and retinex theory. Journal of the Optical Society of America (1917-1983) 61 (Jan.), 1–11.Google Scholar
    11. Levin, A., Zomet, A., Peleg, S., and Weiss, Y., 2003. Seamless image stitching in the gradient domain. Hebrew University Tech Report 2003-82.Google Scholar
    12. Lischinski, D., Farbman, Z., Uyttendaele, M., and Szeliski, R. 2006. Interactive local adjustment of tonal values. ACM Transactions on Graphics 25, 3, 646–653. Google ScholarDigital Library
    13. Orzan, A., Bousseau, A., Winnemoeller, H., Barla, P., Joëlle, and Salesin, D. 2008. Diffusion curves: A vector representation for smooth shaded images. ACM Transactions on Graphics 27, 3. Google ScholarDigital Library
    14. Pérez, P., Gangnet, M., and Blake, A. 2003. Poisson image editing. ACM Transactions on Graphics 22, 3, 313–318. Google ScholarDigital Library
    15. Press, W. H., Teukolsky, S. A., Vetterling, W. T., and Flannery, B. P. 1992. Numerical Recipes in C: The Art of Scientific Computing. Cambridge University Press, New York, NY, USA, ch. 19.6, 871–888. Google ScholarDigital Library
    16. Roberts, A. J. 2001. Simple and fast multigrid solution of Poisson’s equation using diagonally oriented grids. ANZIAM J. 43, E (July), E1–E36.Google Scholar
    17. Schödl, A., Szeliski, R., Salesin, D. H., and Essa, I. 2000. Video textures. In Proceedings of ACM SIGGRAPH 2000, ACM Press/Addison-Wesley Publishing Co., New York, NY, USA, 489–498. Google ScholarDigital Library
    18. Szeliski, R. 2006. Locally adapted hierarchical basis preconditioning. ACM Transactions on Graphics 25, 3, 1135–1143. Google ScholarDigital Library
    19. Tumblin, J., Agrawal, A., and Raskar, R. 2005. Why I want a gradient camera. In Proceedings of IEEE CVPR 2005, vol. 1, 103–110. Google ScholarDigital Library
    20. Werner, H. 1935. Studies on contour: I. qualitative analyses. The American Journal of Psychology 47, 1 (Jan.), 40–64.Google ScholarCross Ref


ACM Digital Library Publication:



Overview Page: