“Real-time BRDF editing in complex lighting” by Ben-Artzi, Overbeck and Ramamoorthi

  • ©Aner Ben-Artzi, Ryan S. Overbeck, and Ravi Ramamoorthi




    Real-time BRDF editing in complex lighting



    Current systems for editing BRDFs typically allow users to adjust analytic parameters while visualizing the results in a simplified setting (e.g. unshadowed point light). This paper describes a real-time rendering system that enables interactive edits of BRDFs, as rendered in their final placement on objects in a static scene, lit by direct, complex illumination. All-frequency effects (ranging from near-mirror reflections and hard shadows to diffuse shading and soft shadows) are rendered using a precomputation-based approach. Inspired by real-time relighting methods, we create a linear system that fixes lighting and view to allow real-time BRDF manipulation. In order to linearize the image’s response to BRDF parameters, we develop an intermediate curve-based representation, which also reduces the rendering and precomputation operations to 1D while maintaining accuracy for a very general class of BRDFs. Our system can be used to edit complex analytic BRDFs (including anisotropic models), as well as measured reflectance data. We improve on the standard precomputed radiance transfer (PRT) rendering computation by introducing an incremental rendering algorithm that takes advantage of frame-to-frame coherence. We show that it is possible to render reference-quality images while only updating 10% of the data at each frame, sustaining frame-rates of 25-30fps.


    1. Agarwal, S., Ramamoorthi, R., Belongie, S., Jensen, H. 2003. Structured Importance Sampling of Environment Maps. ACM Transactions on Graphics (SIGGRAPH), 22, 3, 605–612. Google ScholarDigital Library
    2. Ashikhmin, M., Shirley, P. 2000a. An Anisotropic Phong BRDF Model. Journal of Graphics Tools, 5, 2, 25–32. Google ScholarDigital Library
    3. Ashikhmin, M., Premoze, S., Shirley, P. 2000b. A Microfacet-based BRDF generator. Proceedings of ACM SIGGRAPH 2000, 65–74. Google ScholarDigital Library
    4. Assarsson, U., Dougherty, M., Mounier, M., Moller, T. 2003, A Geometry-Based Soft Shadow Volume Algorithm Using Graphics Hardware. ACM Transactions on Graphics (SIGGRAPH), 22, 3, 511–520. Google ScholarDigital Library
    5. Ben-Artzi, A., Ramamoorthi, R., Agarwala, M. 2006. Efficient Shadows for Sampled Environment Maps. Journal of Graphics Tools, 11, 1, 13–36.Google ScholarCross Ref
    6. Blinn, J. F., 1977. Models of Light Reflection for Computer Synthesized Pictures. Computer Graphics and Interactive Techniques. 192–198. Google ScholarDigital Library
    7. Cook, R. L, Torrance, K. E., 1982. A Reflectance Model for Computer Graphics. ACM Transactions on Graphics, 1, 1, 7–24. Google ScholarDigital Library
    8. Daubechies, I. 1988. Orthonormal bases of compactly supported wavelets, Comm. Pure & Appl. Math., 41, 909–996.Google ScholarCross Ref
    9. Dana, K. J., B. Van Ginneken, S. K. Nayar, J. J. Koenderink: 1999, Reflectance and Texture of Real World Surfaces. ACM Transactions on Graphics, 18, 1, 1–34. Google ScholarDigital Library
    10. Ershov, S., Kolchin, K., Myszkowski, K., 2001. Rendering Pearlescent Appearance Based on Paint-Composition Modelling. Eurographics, 20, 3.Google Scholar
    11. Jaroszkiewicz, R., McCool, M. 2003. Fast Extraction of BRDFs and Material Maps from Images. Graphics Interface 2003. 1–10.Google Scholar
    12. Kautz, J., McCool, M. 1999. Interactive Rendering with Arbitrary BRDFs using Separable Approximations. Proceedings of the 10th Eurographics Workshop on Rendering. 281–292. Google ScholarDigital Library
    13. Lalonde, P., Fournier, A. 1997. A Wavelet Representation of Reflectance Functions. IEEE Trans. on Visualization & Comp. Graphics, 3(4) 329–336. Google ScholarDigital Library
    14. LaFortune, E., Foo, S., Torrance, K., Greenberg, D. 1997. Non-Linear Approximation of Reflectance Functions. ACM SIGGRAPH 97, 117–126. Google ScholarDigital Library
    15. Lawrence, J., Rusinkiewicz, S., Ramamoorthi, R. 2004. Efficient BRDF Importance Sampling Using a Factored Representation. ACM Transactions on Graphics (SIGGRAPH), 23, 3, 496–505. Google ScholarDigital Library
    16. Lawrence, J., Ben-Artzi, A., Decoro, C., Matusik, W., Pfister, H., Ramamoorthi, R., and Rusinkiewicz, S. 2006. Inverse Shade Trees for Non-Parametric Material Representation and Editing. ACM Transactions on Graphics (SIGGRAPH), 25, 3. Google ScholarDigital Library
    17. Liu, X., Sloan, P., Shum, H., Snyder, J. 2004. All-Frequency Precomputed Radiance Transfer for Glossy Objects. Eurographics Symposium on Rendering. 337–344. Google ScholarDigital Library
    18. Matusik, W., Pfister, H., Brand, M., McMillan, L. 2003. A Data-Driven Reflectance Model. ACM Transactions on Graphics (SIGGRAPH), 223, 3. Google ScholarDigital Library
    19. Maxwell, J. R., Beard, J., Weiner, S., Ladd, D. 1973. Bidirectional reflectance model validation and utilization. Technical Report AFAL-TR-73-303, Environmental Research Institute of Michigan (ERIM), October.Google Scholar
    20. McAllister, D., Lastra, Al, Heidrich, W. 2002. Efficient Rendering of Spatial Bi-directional Reflectance Distribution Functions. Eurographics Workshop on Graphics Hardware, 79–88. Google ScholarDigital Library
    21. McCool, M., Ang, J., Ahmad, A. 2001. Homomorphic Factorization of BRDFs for High-Performance Rendering. Proceedings of ACM SIGGRAPH 2001, 171–178. Google ScholarDigital Library
    22. Ng, R., Ramamoorthi, R., Hanrahan, P. 2003. All-Frequency Shadows Using Non-Linear Wavelet Lighting Approximation. ACM Transactions on Graphics (SIGGRAPH), 22, 3, 376–381. Google ScholarDigital Library
    23. Ng, R., Ramamoorthi, R., Hanrahan, P. 2004. Triple product Wavelet Integrals for All-Frequency Relighting. ACM Transactions on Graphics (SIGGRAPH), 23, 3, 475–485. Google ScholarDigital Library
    24. Ngan, A., Durand, F., Matusik, W. 2005. Experimental Analysis of BRDF Models. Eurographics Symposium on Rendering. 117–126. Google ScholarDigital Library
    25. Nimeroff, J., Simoncelli, E., Dorsey, J. 1994. Efficient Rerendering of Naturally Illuminated Environments. Eurographics Rendering Workshop 94, 359–373.Google Scholar
    26. Oren, M., Nayar, S. 1994. Generalization of Lambert’s Reflectance Model. Proceedings of ACM SIGGRAPH 94. 239–246. Google ScholarDigital Library
    27. Pearl–A paint design tool. www.integra.jp/eng/products/pearl.Google Scholar
    28. Pellacini, F., Vidimce, K., Lefohn, A. E., Mohr, A., Leone, M., and Warren, J. 2005. Lpics: A Hybrid Hardware-Accelerated Relighting Engine for Computer Cinematography. ACM Transactions on Graphics (SIGGRAPH). 24, 3, 464–470. Google ScholarDigital Library
    29. Phong, Bui Tuong. 1975. Illumination for Computer Generated Pictures. Communications of the ACM, 18, 6, 311–317. Google ScholarDigital Library
    30. Ramamoorthi, R., and Hanrahan, P. 2002. Frequency Space Environment Map Rendering. ACM Transactions on Graphics (SIGGRAPH), 21, 3. Google ScholarDigital Library
    31. Rusinkiewicz, S. 1998a. bv: graphics.stanford.edu/~smr/brdf/bv.Google Scholar
    32. Rusinkiewicz, S. 1998b. A New Change of Variables for Efficient BRDF Representation. Eurographics Rendering Workshop 98, 11–22.Google ScholarCross Ref
    33. Schlick, C. 1994. An inexpensive BRDF Model for Physically-Based Rendering. Computer Graphics Forum (Eurographics), 13, 3, 233–246.Google ScholarCross Ref
    34. Sloan, P., Kautz, J., and Snyder, J. 2002. Precomputed Radiance Transfer for Real-Time Rendering in Dynamic, Low-Frequency Lighting Environments. ACM Transactions on Graphics (SIGGRAPH), 21, 3, 527–536. Google ScholarDigital Library
    35. Sloan, P., Kautz, J., and Snyder, J. 2003. Clustered Principal Components for Precomputed Radiance Transfer. ACM Transactions on Graphics (SIGGRAPH), 24, 3. 382–391. Google ScholarDigital Library
    36. Sloan, P., Luna, B., and Snyder, J. 2005. Local, Deformable Precomputed Radiance Transfer. ACM Transactions on Graphics (SIGGRAPH), 24, 3. 1216–1224. Google ScholarDigital Library
    37. Wan, L., Wong, T., and Leung, C. 2005. Spherical Q2-tree for Sampling Dynamic Environment Sequences. Eurographics Symposium on Rendering, 21–30. Google ScholarDigital Library
    38. Wang, R., Tran, J., and Luebke, D. 2004. All-Frequency Relighting of Non-Diffuse Objects using Separable BRDF Approximation. Eurographics Symposium on Rendering, 345–354 Google ScholarDigital Library
    39. Ward, G. 1992. Measuring and Modeling Anisotropic Reflection, Proceeding of ACM SIGGRAPH 92. 265–272. Google ScholarDigital Library
    40. Zhou, K., Ju, Y., Lin, S., Guo, B., and Shum, H. 2005. Precomputed Shadow Fields for Dynamic Scenes. ACM Transactions on Graphics (SIGGRAPH), 25, 3. 1196–1201. Google ScholarDigital Library

ACM Digital Library Publication:

Overview Page: