“Ray tracing volume densities” by Kajiya and Von Herzen

  • ©James (Jim) T. Kajiya and Brian Von Herzen




    Ray tracing volume densities



    This paper presents new algorithms to trace objects represented by densities within a volume grid, e.g. clouds, fog, flames, dust, particle systems. We develop the light scattering equations, discuss previous methods of solution, and present a new approximate solution to the full three-dimensional radiative scattering problem suitable for use in computer graphics. Additionally we review dynamical models for clouds used to make an animated movie.


    1. Anselone, P.M., and Gibbs, A.G., 1974: Convergence of the discrete ordinates method for the transport equation, Constructive and Computational methods for differential and integral equations, Springer Verlag Lecture notes in math 430
    2. Appel, A., 1968: Some techniques for shading machine renderings of solids, 1968 SJCC, 37-45
    3. Blinn, J.F., 1982: Light reflection functions for simulation of clouds and dusty surfaces. Proc. SIGGRAPH82. In Comput. Gr. 16,3, 21-29.
    4. Chandrasekhar, S., 1950: Radiative Transfer, Oxford University Press.
    5. Clark, T.L., 1979: Numerical Simulations with a three-dimensional cloud model: lateral boundary condition experiments and multicellular severe storm simulations. J. of the Atmospheric Sciences, 36, 2191.
    6. Courant, R. and Hilbert, D., 1953: Methods of Mathematical Physics v.1, Interscience, New York.
    7. Dahlquist, G., and Bjork, A., 1974: Numerical Methods, Prentice Hall, New York.
    8. Goldstein, E. and Nagle, R. 1971: 3D visual simulation, Simulation 16, 25-31.
    9. Kajiya, J.T., 1983: Ray tracing procedurally defined objects, SIGGRAPH83, Comput. Gr. 17,3, 91-102.
    10. Kajiya, J.T., 1982: Ray tracing parametric patches, SIGGRAPH82, Comput. Gr. 16,3, 245-254.
    11. Keller, H.B., 1960a: Approximate solutions of transport problems, SIAM J. Appl. Math. 8, 43-73.
    12. Keller, H.B., 1960b: On the pointwise convergence of the discrete ordinates method, SIAM J. Appl. Math. 8, 560-567.
    13. Max, N., 1983: Panel on the simulation of natural phenomena, Proc. SIGGRAPH83, In Comput. Gr. 17,3, 137-139.
    14. Schlesinger, R.E., 1975: A three-dimensional numerical model of an isolated deep convective cloud: Preliminary results. J. of the Atmospheric Sciences, 32, 934-957.
    15. Schlesinger, R.E., 1978: A three-dimensional numerical model of an isolated thunderstorm, part I: comparative experiments for variable ambient wind shear. J. of the Atmospheric Sciences, 35, 690-713.
    16. Schlesinger, R.E., 1980: A three-dimensional numerical model of an isolated thunderstorm, part II: dynamics of updraft splitting and mesovortex couplet evolution. J of the Atmospheric Sciences, 37, 395.
    17. Simpson, J., Van Helvoirt, G., McCumber, M., 1982: Three-dimensional simulations of cumulus congestus clouds on GATE day 261. J. of the Atmospheric Sciences, 39, 126.
    18. Reeves, W.T., 1983: Particle systems—a technique for modeling a class of fuzzy objects, ACM Trans. on Graphics, 2,2.
    19. Voss, R., 1983: Fourier synthesis of gaussian fractals: 1/f noises, landscapes, and flakes, Tutorial on State of the Art Image Synthesis v.10, SIGGRAPH83.
    20. Wallace, J. M., and Hobbs, P. V., 1977: Atmospheric Science, Academic Press, pp.359-407.
    21. Whitted, T., 1980: An improved illumination model for shaded display, Comm. ACM 23, 343-349.

ACM Digital Library Publication: