“Pteromys: interactive design and optimization of free-formed free-flight model airplanes” by Umetani, Koyama, Schmidt and Igarashi

  • ©Nobuyuki Umetani, Yuki Koyama, Ryan Schmidt, and Takeo Igarashi

Conference:


Type:


Title:

    Pteromys: interactive design and optimization of free-formed free-flight model airplanes

Session/Category Title: Fabrication-Oriented Design


Presenter(s)/Author(s):


Moderator(s):



Abstract:


    This paper introduces novel interactive techniques for designing original hand-launched free-flight glider airplanes which can actually fly. The aerodynamic properties of a glider aircraft depend on their shape, imposing significant design constraints. We present a compact and efficient representation of glider aerodynamics that can be fit to real-world conditions using a data-driven method. To do so, we acquire a sample set of glider flight trajectories using a video camera and the system learns a nonlinear relationship between forces on the wing and wing shape. Our acquisition system is much simpler to construct than a wind tunnel, but using it we can efficiently discover a wing model for simple gliding aircraft. Our resulting model can handle general free-form wing shapes and yet agrees sufficiently well with the acquired airplane flight trajectories. Based on this compact aerodynamics model, we present a design tool in which the wing configuration created by a user is interactively optimized to maximize flight-ability. To demonstrate the effectiveness of our tool for glider design by novice users, we compare it with a traditional design workflow.

References:


    1. Abbott, I. H. 1959. Theory of Wing Sections: Including a Summary of Airfoil Data. Dover Publications.Google Scholar
    2. Bickel, B., Bächer, M., Otaduy, M. A., Matusik, W., Pfister, H., and Gross, M. 2009. Capture and modeling of non-linear heterogeneous soft tissue. ACM TOG 28, 3. Google ScholarDigital Library
    3. Bickel, B., Bächer, M., Otaduy, M. A., Lee, H. R., Pfister, H., Gross, M., and Matusik, W. 2010. Design and fabrication of materials with desired deformation behavior. ACM TOG 29, 4. Google ScholarDigital Library
    4. Ceylan, D., Li, W., Mitra, N. J., Agrawala, M., and Pauly, M. 2013. Designing and fabricating mechanical automata from mocap sequences. ACM TOG 32, 6. Google ScholarDigital Library
    5. Chen, D., Levin, D. I. W., Didyk, P., Sitthi-Amorn, P., and Matusik, W. 2013. Spec2Fab: A reducer-tuner model for translating specifications to 3D prints. ACM TOG 32, 4. Google ScholarDigital Library
    6. Coros, S., Thomaszewski, B., Noris, G., Sueda, S., Forberg, M., Sumner, R. W., Matusik, W., and Bickel, B. 2013. Computational design of mechanical characters. ACM TOG 32, 4. Google ScholarDigital Library
    7. Hildebrand, K., Bickel, B., and Alexa, M. 2012. Crdbrd: Shape fabrication by sliding planar slices. CGF 31. Google ScholarDigital Library
    8. Igarashi, T., Moscovich, T., and Hughes, J. F. 2005. As-rigid-as-possible shape manipulation. ACM TOG 24, 3. Google ScholarDigital Library
    9. Igarashi, Y., Igarashi, T., and Mitani, J. 2012. Beady: Interactive beadwork design and construction. ACM TOG 31, 4. Google ScholarDigital Library
    10. Ju, E., Won, J., Lee, J., Choi, B., Noh, J., and Choi, M. G. 2013. Data-driven control of flapping flight. ACM TOG 32, 5. Google ScholarDigital Library
    11. Li, X.-Y., Ju, T., Gu, Y., and Hu, S.-M. 2011. A geometric study of v-style pop-ups: Theories and algorithms. ACM TOG 30, 4. Google ScholarDigital Library
    12. Luo, L., Baran, I., Rusinkiewicz, S., and Matusik, W. 2012. Chopper: Partitioning models into 3D-printable parts. ACM TOG 31, 6. Google ScholarDigital Library
    13. McCrae, J., Singh, K., and Mitra, N. J. 2011. Slices: A shape-proxy based on planar sections. ACM TOG 30, 6. Google ScholarDigital Library
    14. Miguel, E., Tamstorf, R., Bradley, D., Schvartzman, S. C., Thomaszewski, B., Bickel, B., Matusik, W., Marschner, S., and Otaduy, M. A. 2013. Modeling and estimation of internal friction in cloth. ACM TOG 32, 6. Google ScholarDigital Library
    15. Otaduy, M. A., Bickel, B., Bradley, D., and Wang, H. 2012. Data-driven simulation methods in computer graphics: Cloth, tissue and faces. In SIGGRAPH Courses. Google ScholarDigital Library
    16. Pai, D. K., Doel, K. v. d., James, D. L., Lang, J., Lloyd, J. E., Richmond, J. L., and Yau, S. H. 2001. Scanning physical interaction behavior of 3D objects. In Proc. SIGGRAPH. Google ScholarDigital Library
    17. Panozzo, D., Block, P., and Sorkine-Hornung, O. 2013. Designing unreinforced masonry models. ACM TOG 32, 4. Google ScholarDigital Library
    18. Perkins, C. D., and Hage, R. E. 1949. Airplane Performance, Stability and Control, 1 ed. Wiley, 1.Google Scholar
    19. Prévost, R., Whiting, E., Lefebvre, S., and Sorkine-Hornung, O. 2013. Make it stand: Balancing shapes for 3D fabrication. ACM TOG 32, 4. Google ScholarDigital Library
    20. Schmidt, R., and Ratto, M. 2013. Design-to-fabricate: Maker hardware requires maker software. IEEE CG&A 33, 6. Google ScholarDigital Library
    21. Schwartzburg, Y., and Pauly, M. 2013. Fabrication-aware design with intersecting planar pieces. CGF 32, 2.Google ScholarCross Ref
    22. Shevell, R. S. 1988. Fundamentals of Flight (2nd Edition), 2 ed. Prentice Hall, 8.Google Scholar
    23. Sobieszczanski-Sobieski, J., and Haftka, R. T. 1997. Multidisciplinary aerospace design optimization: survey of recent developments. Structural optimization 14, 1.Google Scholar
    24. Song, P., Fu, C.-W., Goswami, P., Zheng, J., Mitra, N. J., and Cohen-Or, D. 2013. Reciprocal frame structures made easy. ACM TOG 32, 4. Google ScholarDigital Library
    25. Stava, O., Vanek, J., Benes, B., Carr, N., and Měch, R. 2012. Stress relief: Improving structural strength of 3D printable objects. ACM TOG 31, 4. Google ScholarDigital Library
    26. Umetani, N., Kaufman, D. M., Igarashi, T., and Grinspun, E. 2011. Sensitive couture for interactive garment modeling and editing. ACM TOG 30, 4. Google ScholarDigital Library
    27. Umetani, N., Igarashi, T., and Mitra, N. J. 2012. Guided exploration of physically valid shapes for furniture design. ACM TOG 31, 4. Google ScholarDigital Library
    28. Vouga, E., Höbinger, M., Wallner, J., and Pottmann, H. 2012. Design of self-supporting surfaces. ACM TOG 31, 4. Google ScholarDigital Library
    29. Wang, H., O’Brien, J. F., and Ramamoorthi, R. 2011. Data-driven elastic models for cloth: Modeling and measurement. ACM TOG 30, 4. Google ScholarDigital Library
    30. Weissmann, S., and Pinkall, U. 2012. Underwater rigid body dynamics. ACM TOG 31, 4. Google ScholarDigital Library
    31. Whiting, E., Shin, H., Wang, R., Ochsendorf, J., and Durand, F. 2012. Structural optimization of 3D masonry buildings. ACM TOG 31, 6. Google ScholarDigital Library
    32. Zhu, L., Xu, W., Snyder, J., Liu, Y., Wang, G., and Guo, B. 2012. Motion-guided mechanical toy modeling. ACM TOG 31, 6. Google ScholarDigital Library


ACM Digital Library Publication:



Overview Page: