“Printing spatially-varying reflectance for reproducing HDR images” by Dong, Tong, Pellacini and Guo

  • ©Yue Dong, Xin Tong, Fabio Pellacini, and Baining Guo




    Printing spatially-varying reflectance for reproducing HDR images



    We present a solution for viewing high dynamic range (HDR) images with spatially-varying distributions of glossy materials printed on reflective media. Our method exploits appearance variations of the glossy materials in the angular domain to display the input HDR image at different exposures. As viewers change the print orientation or lighting directions, the print gradually varies its appearance to display the image content from the darkest to the brightest levels. Our solution is based on a commercially available printing system and is fully automatic. Given the input HDR image and the BRDFs of a set of available inks, our method computes the optimal exposures of the HDR image for all viewing conditions and the optimal ink combinations for all pixels by minimizing the difference of their appearances under all viewing conditions. We demonstrate the effectiveness of our method with print samples generated from different inputs and visualized under different viewing and lighting conditions.


    1. Alexa, M., and Matusik, W. 2010. Reliefs as images. ACM Trans. Graph. 29 (July), 60:1–60:7. Google ScholarDigital Library
    2. Bickel, B., Bächer, M., Otaduy, M. A., Lee, H. R., Pfister, H., Gross, M., and Matusik, W. 2010. Design and fabrication of materials with desired deformation behavior. ACM Trans. Graph. 29 (July), 63:1–63:10. Google ScholarDigital Library
    3. Bimber, O., and Iwai, D. 2008. Superimposing dynamic range. ACM Trans. Graph. 27 (December), 150:1–150:8. Google ScholarDigital Library
    4. Color-Logic, 2011. The color-logic process metallic color system.Google Scholar
    5. Dong, Y., Wang, J., Pellacini, F., Tong, X., and Guo, B. 2010. Fabricating spatially-varying subsurface scattering. ACM Trans. Graph. 29 (July), 62:1–62:10. Google ScholarDigital Library
    6. Dong, Y., Wang, J., Tong, X., Snyder, J., Lan, Y., BenEzra, M., and Guo, B. 2010. Manifold bootstrapping for svbrdf capture. ACM Trans. Graph. 29 (July), 98:1–98:10. Google ScholarDigital Library
    7. Durand, F., and Dorsey, J. 2002. Fast bilateral filtering for the display of high-dynamic-range images. ACM Trans. Graph. 21 (July), 257–266. Google ScholarDigital Library
    8. Fattal, R., Lischinski, D., and Werman, M. 2002. Gradient domain high dynamic range compression. ACM Trans. Graph. 21 (July), 249–256. Google ScholarDigital Library
    9. Gardner, A., Tchou, C., Hawkins, T., and Debevec, P. 2003. Linear light source reflectometry. In ACM SIGGRAPH 2003 Papers, ACM, New York, NY, USA, SIGGRAPH ’03, 749–758. Google ScholarDigital Library
    10. Hašan, M., Fuchs, M., Matusik, W., Pfister, H., and Rusinkiewicz, S. 2010. Physical reproduction of materials with specified subsurface scattering. ACM Trans. Graph. 29 (July), 61:1–61:10. Google ScholarDigital Library
    11. Holroyd, M., Baran, I., Lawrence, J., and Matusik, W. 2011. Computing and fabricating multilayer models. ACM Trans. Graph. 30 (Dec.), 187:1–187:8. Google ScholarDigital Library
    12. Hullin, M. B., Lensch, H. P. A., Raskar, R., Seidel, H.-P., and Ihrke, I. 2011. Dynamic display of BRDFs. In Computer Graphics Forum (Proc. EUROGRAPHICS), Blackwell, Llandudno, UK, O. Deussen and M. Chen, Eds., Eurographics, 475–483.Google Scholar
    13. Matusik, W., Pfister, H., Brand, M., and McMillan, L. 2003. A data-driven reflectance model. ACM Trans. Graph. 22 (July), 759–769. Google ScholarDigital Library
    14. Matusik, W., Ajdin, B., Gu, J., Lawrence, J., Lensch, H. P. A., Pellacini, F., and Rusinkiewicz, S. 2009. Printing spatially-varying reflectance. ACM Trans. Graph. 28 (December), 128:1–128:9. Google ScholarDigital Library
    15. Mount, D., and Arya, S. 1997. Ann: A library for approximate nearest neighbor searching. In CGC 2nd Annual Fall Workshop on Computational Geometry.Google Scholar
    16. Reinhard, E., and Devlin, K. 2005. Dynamic range reduction inspired by photoreceptor physiology. Visualization and Computer Graphics, IEEE Transactions on 11, 1 (jan.-feb.), 13–24. Google ScholarDigital Library
    17. Reinhard, E., Stark, M., Shirley, P., and Ferwerda, J. 2002. Photographic tone reproduction for digital images. ACM Trans. Graph. 21 (July), 267–276. Google ScholarDigital Library
    18. Reinhard, E., Ward, G., Pattanaik, S., Debevec, P., Heidrich, W., and Myszkowski, K. 2010. High Dynamic Range Imaging: Acquisition, Display, and Image-based Lighting, 2nd ed. The Morgan Kaufmann series in Computer Graphics. Elsevier (Morgan Kaufmann), Burlington, MA.Google Scholar
    19. Seetzen, H., Heidrich, W., Stuerzlinger, W., Ward, G., Whitehead, L., Trentacoste, M., Ghosh, A., and Vorozcovs, A. 2004. High dynamic range display systems. ACM Trans. Graph. 23 (August), 760–768. Google ScholarDigital Library
    20. Ward, G. 2002. A wide field, high dynamic range, stereographic viewer. in PICS, 30–34.Google Scholar
    21. Wetzstein, G., Lanman, D., Heidrich, W., and Raskar, R. 2011. Layered 3d: tomographic image synthesis for attenuation-based light field and high dynamic range displays. ACM Trans. Graph. 30 (August), 95:1–95:12. Google ScholarDigital Library
    22. Weyrich, T., Peers, P., Matusik, W., and Rusinkiewicz, S. 2009. Fabricating microgeometry for custom surface reflectance. ACM Transactions on Graphics (Proc. SIGGRAPH) 28, 3 (Aug.). Google ScholarDigital Library

ACM Digital Library Publication:

Overview Page: