“Printed Perforated Lampshades for Continuous Projective Images” by Zhao, Lu, Wei, Lischinski, Sharf, et al. …

  • ©Haisen Zhao, Lin Lu, Yuan Wei, Daniel (Dani) Lischinski, Andrei Sharf, Daniel Cohen-Or, and Baoquan Chen

Conference:


Type(s):


Title:

    Printed Perforated Lampshades for Continuous Projective Images

Session/Category Title:   FABRICATING STRUCTURE & APPEARANCE


Presenter(s)/Author(s):


Moderator(s):



Abstract:


    We present a technique for designing three-dimensional- (3D) printed perforated lampshades that project continuous grayscale images onto the surrounding walls. Given the geometry of the lampshade and a target grayscale image, our method computes a distribution of tiny holes over the shell, such that the combined footprints of the light emanating through the holes form the target image on a nearby diffuse surface. Our objective is to approximate the continuous tones and the spatial detail of the target image to the extent possible within the constraints of the fabrication process.

    To ensure structural integrity, there are lower bounds on the thickness of the shell, the radii of the holes, and the minimal distances between adjacent holes. Thus, the holes are realized as thin tubes distributed over the lampshade surface. The amount of light passing through a single tube may be controlled by the tube’s radius and by its orientation (tilt angle). The core of our technique thus consists of determining a suitable configuration of the tubes: their distribution across the relevant portion of the lampshade, as well as the parameters (radius, tilt angle) of each tube. This is achieved by computing a capacity-constrained Voronoi tessellation over a suitably defined density function and embedding a tube inside the maximal inscribed circle of each tessellation cell.

References:


    1. Marc Alexa and Wojciech Matusik. 2012. Irregular pit placement for dithering images by self-occlusion. Comput. Graph. 36, 6 (2012), 635–641. DOI:http://dx.doi.org/10.1016/j.cag.2012.02.008 2011, Joint Symposium on Computational Aesthetics (CAe), Non-Photorealistic Animation and Rendering (NPAR), and Sketch-Based Interfaces and Modeling (SBIM). 
    2. Michael Balzer, Thomas Schlömer, and Oliver Deussen. 2009. Capacity-constrained point distributions: A variant of Lloyd’s method. ACM Trans. Graph. 28, 3, Article 86 (July 2009), 8 pages. DOI:http://dx.doi.org/10.1145/1531326.1531392 
    3. Ilya Baran, Philipp Keller, Derek Bradley, Stelian Coros, Wojciech Jarosz, Derek Nowrouzezahrai, and Markus Gross. 2012. Manufacturing layered attenuators for multiple prescribed shadow images. Comp. Graph. Forum 31, 2 (May 2012), 603–610. DOI:http://dx.doi.org/10.1111/j.1467-8659.2012.03039.x 
    4. Jianghao Chang, Benoît Alain, and Victor Ostromoukhov. 2009. Structure-aware error diffusion. ACM Trans. Graph. 28, 5, Article 162 (Dec. 2009), 8 pages. DOI:http://dx.doi.org/10.1145/1618452.1618508 
    5. Fernando de Goes, Katherine Breeden, Victor Ostromoukhov, and Mathieu Desbrun. 2012. Blue noise through optimal transport. ACM Trans. Graph. 31, 6, Article 171 (Nov. 2012), 11 pages. DOI:http://dx.doi.org/10.1145/2366145.2366190 
    6. Reiner Eschbach and Keith T. Knox. 1991. Error-diffusion algorithm with edge enhancement. J. Opt. Soc. Am. A 8, 12 (Dec 1991), 1844–1850. DOI:http://dx.doi.org/10.1364/JOSAA.8.001844
    7. Manuel Finckh, Holger Dammertz, and Hendrik P. A. Lensch. 2010. Geometry construction from caustic images. In Computer Vision – ECCV 2010, Kostas Daniilidis, Petros Maragos, and Nikos Paragios (Eds.). Lecture Notes in Computer Science, Vol. 6315. Springer Berlin Heidelberg, 464–477. DOI:http://dx.doi.org/10.1007/978-3-642-15555-0_34 
    8. Helmut Kipphan. 2001. Handbook of Print Media: Technologies and Production Methods. Springer-Verlag, Berlin. 
    9. Thomas Kiser, Michael Eigensatz, MinhMan Nguyen, Philippe Bompas, and Mark Pauly. 2013. Architectural caustics — Controlling light with geometry. In Advances in Architectural Geometry 2012, Lars Hesselgren, Shrikant Sharma, Johannes Wallner, Niccolo Baldassini, Philippe Bompas, and Jacques Raynaud (Eds.). Springer, Vienna, 91–106. DOI:http://dx.doi.org/10.1007/978-3-7091-1251-9_7
    10. Yanxiang Lan, Yue Dong, Fabio Pellacini, and Xin Tong. 2013. Bi-scale appearance fabrication. ACM Trans. Graph. 32, 4, Article 145 (July 2013), 12 pages. DOI:http://dx.doi.org/10.1145/2461912.2461989 
    11. Daniel L. Lau and Gonzalo R. Arce. 2008. Modern Digital Halftoning, Second Edition (Signal Processing and Communications) (2 ed.). CRC Press, Boca Raton, FL. http://www.amazon.com/exec/obidos/redirect?tag=citeulike07-20&path==ASIN/1420047531. 
    12. Anat Levin, Daniel Glasner, Ying Xiong, Frédo Durand, William Freeman, Wojciech Matusik, and Todd Zickler. 2013. Fabricating BRDFs at high spatial resolution using wave optics. ACM Trans. Graph. 32, 4, Article 144 (July 2013), 14 pages. DOI:http://dx.doi.org/10.1145/2461912.2461981 
    13. Hongwei Li, Li-Yi Wei, Pedro V. Sander, and Chi-Wing Fu. 2010. Anisotropic blue noise sampling. ACM Trans. Graph. 29, 6, Article 167 (Dec. 2010), 12 pages. DOI:http://dx.doi.org/10.1145/1882261.1866189 
    14. Qun Lou and Peter Stucki. 1998. Fundamentals of 3d halftoning. In Electronic Publishing, Artistic Imaging, and Digital Typography, 7th International Conference on Electronic Publishing, EP ’98, Held Jointly with the 4th International Conference on Raster Imaging and Digital Typography, RIDT ’98, St. Malo, France, March 30 – April 3, 1998, Proceedings. 224–239. DOI:http://dx.doi.org/10.1007/BFb0053273 
    15. Tom Malzbender, Ramin Samadani, Steven Scher, Adam Crume, Douglas Dunn, and James Davis. 2012. Printing reflectance functions. ACM Trans. Graph. 31, 3, Article 20 (June 2012), 11 pages. DOI:http://dx.doi.org/10.1145/2167076.2167078 
    16. Niloy J. Mitra and Mark Pauly. 2009. Shadow art. ACM Trans. Graph. 28, 5, Article 156 (Dec. 2009), 7 pages. DOI:http://dx.doi.org/10.1145/1618452.1618502 
    17. Theophano Mitsa and Kevin J. Parker. 1992. Digital halftoning technique using a blue-noise mask. J. Opt. Soc. Am. A 9, 11 (Nov 1992), 1920–1929. DOI:http://dx.doi.org/10.1364/JOSAA.9.001920
    18. Wai-Man Pang, Yingge Qu, Tien-Tsin Wong, Daniel Cohen-Or, and Pheng-Ann Heng. 2008. Structure-aware halftoning. ACM Trans. Graph. 27, 3, Article 89 (Aug. 2008), 8 pages. DOI:http://dx.doi.org/10.1145/1360612.1360688 
    19. Marios Papas, Thomas Houit, Derek Nowrouzezahrai, Markus Gross, and Wojciech Jarosz. 2012. The magic lens: Refractive steganography. ACM Trans. Graph. 31, 6, Article 186 (Nov. 2012), 10 pages. DOI:http://dx.doi.org/10.1145/2366145.2366205 
    20. Marios Papas, Wojciech Jarosz, Wenzel Jakob, Szymon Rusinkiewicz, Wojciech Matusik, and Tim Weyrich. 2011. Goal-based caustics. Comp. Graph. Forum 30, 2 (June 2011), 503–511. DOI:http://dx.doi.org/10.1111/j.1467-8659.2011.01876.x
    21. Thiago Pereira, Szymon Rusinkiewicz, and Wojciech Matusik. 2014. Computational light routing: 3D printed optical fibers for sensing and display. ACM Trans. Graph. 33, 3, Article 24 (June 2014), 13 pages. DOI:http://dx.doi.org/10.1145/2602140 
    22. Yuliy Schwartzburg, Romain Testuz, Andrea Tagliasacchi, and Mark Pauly. 2014. High-contrast computational caustic design. ACM Trans. Graph. 33, 4, Article 74 (July 2014), 11 pages. DOI:http://dx.doi.org/10.1145/2601097.2601200 
    23. Peter Stucki. 1997. 3D halftoning. In Proc. SPIE 2949, Imaging Sciences and Display Technologies. Proc. SPIE 2949 (1997), 314–317. DOI:http://dx.doi.org/10.1117/12.266339
    24. Robert Ulichney. 1987. Digital Halftoning. MIT Press, Cambridge, MA. 
    25. R. A. Ulichney. 1988. Dithering with blue noise. Proc. IEEE 76, 1 (Jan 1988), 56–79. DOI:http://dx.doi.org/10.1109/5.3288
    26. Gordon Wetzstein, Douglas Lanman, Wolfgang Heidrich, and Ramesh Raskar. 2011. Layered 3d: Tomographic image synthesis for attenuation-based light field and high dynamic range displays. ACM Trans. Graph. 30, 4, Article 95 (July 2011), 12 pages. DOI:http://dx.doi.org/10.1145/2010324.1964990 
    27. Tim Weyrich, Pieter Peers, Wojciech Matusik, and Szymon Rusinkiewicz. 2009. Fabricating microgeometry for custom surface reflectance. ACM Trans. Graph. 28, 3, Article 32 (July 2009), 6 pages. DOI:http://dx.doi.org/10.1145/1531326.1531338 
    28. Karl Willis, Eric Brockmeyer, Scott Hudson, and Ivan Poupyrev. 2012. Printed optics: 3D printing of embedded optical elements for interactive devices. In Proceedings of the 25th Annual ACM Symposium on User Interface Software and Technology (UIST’12). ACM, New York, NY, 589–598. DOI:http://dx.doi.org/10.1145/2380116.2380190 
    29. Yonghao Yue, Kei Iwasaki, Bing-Yu Chen, Yoshinori Dobashi, and Tomoyuki Nishita. 2014. Poisson-based continuous surface generation for goal-based caustics. ACM Trans. Graph. 33, 3, Article 31 (June 2014), 7 pages. DOI:http://dx.doi.org/10.1145/2580946 
    30. Chi Zhou and Yong Chen. 2009. Three-dimensional digital halftoning for layered manufacturing based on droplets. Transactions of North American Manufacturing Research Institute of SME 37 (2009), 175–182.

ACM Digital Library Publication:



Overview Page: