“Predicting Appearance From Measured Microgeometry of Metal Surfaces” by Dong, Walter, Marschner and Greenberg

  • ©Zhao Dong, Bruce J. Walter, Steve Marschner, and Donald P. Greenberg

Conference:


Type:


Title:

    Predicting Appearance From Measured Microgeometry of Metal Surfaces

Session/Category Title: RENDERING OF COMPLEX MICROSTRUCTURE


Presenter(s)/Author(s):


Moderator(s):



Abstract:


    The visual appearance of many materials is created by micro-scale details of their surface geometry. In this article, we investigate a new approach to capturing the appearance of metal surfaces without reflectance measurements, by deriving microfacet distributions directly from measured surface topography. Modern profilometers are capable of measuring surfaces with subwavelength resolution at increasingly rapid rates. We consider both wave- and geometric-optics methods for predicting BRDFs of measured surfaces and compare the results to optical measurements from a gonioreflectometer for five rough metal samples. Surface measurements are also used to predict spatial variation, or texture, which is especially important for the appearance of our anisotropic brushed metal samples.

    Profilometer-based BRDF acquisition offers many potential advantages over traditional techniques, including speed and easy handling of anisotropic, highly directional materials. We also introduce a new generalized normal distribution function, the ellipsoidal NDF, to compactly represent nonsymmetric features in our measured data and texture synthesis.

References:


    1. M. Ashikhmin, S. Premože, and P. Shirley. 2000. A microfacet-based brdf generator. In Proceedings of SIGGRAPH’00. 65–74. 
    2. M. Ashikhmin and P. Shirley. 2000. An anisotropic phong brdf model. J. Graph. Tools 5, 2, 25–32. 
    3. P. Beckmann and A. Spizzichino. 1968. The Scattering of Electromagnetic Waves from Rough Surfaces. Artech House Radar Library. Books on Demand.
    4. J. F. Blinn. 1977. Models of light reflection for computer synthesized pictures. In Computer Graphics (Proceedings of SIGGRAPH’77). 192–198. 
    5. B. Burley. 2012. Physically-based shading at disney. In ACM SIGGRAPH 2012 Course: Practical Physically-based Shading in Film and Game Production. SIGGRAPH’12.
    6. R. L. Cook and K. E. Torrance. 1982. A reflectance model for computer graphics. ACM Trans. Graph. 1, 1, 7–24. 
    7. T. Cuypers, T. Haber, P. Bekaert, S. B. Oh, and R. Raskar. 2012. Reflectance model for diffraction. ACM Trans. Graph. 31, 5, 122:1–122:11. 
    8. K. Dana. 2001. Brdf/btf measurement device. In Proceedings of ICCV. Vol. 2. 460–466.
    9. K. J. Dana, B. van Ginneken, S. K. Nayar, and J. J. Koenderink, J. J. 1999. Reflectance and texture of real-world surfaces. ACM Trans. Graph. 18, 1–34. 
    10. D. Dhillon, J. Teyssier, M. Single, I. Gaponenko, M. Milinkovitch, and M. Zwicker. 2014. Interactive diffraction from biological nanostructures. Computer Graphics Forum 33, 8, 177–188. 
    11. Y. Dong, J. Wang, X. Tong, J. Snyder, Y. Lan, Y., M. Ben-Ezra, and B. Guo. 2010. Manifold bootstrapping for svbrdf capture. ACM Trans. Graph. 29, 98:1–98:10. 
    12. A. Gardner, C. Tchou, T. Hawkins, and P. Debevec. 2003. Linear light source reflectometry. ACM Trans. Graph. 22, 3, 749–758. 
    13. G. Garg, G., E.-V. Talvala, M. Levoy, and H. P. A. Lensch. 2006. Symmetric photography: Exploiting data-sparseness in reflectance fields. In Rendering Techniques. 251–262. 
    14. D. Goldman, B. Curless, A. Hertzmann, and S. Seitz. 2005. Shape and spatially-varying brdfs from photometric stereo. In Proceedings of ICCV. Vol. 1. 341–348. 
    15. J. Gu, C.-I. Tu, R. Ramamoorthi, P. Belhumeur, W. Matusik, and S. Nayar, S. 2006. Time-varying surface appearance: acquisition, modeling and rendering. ACM Trans. Graph. 25, 3, 762–771. 
    16. J. Y. Han and K. Perlin. 2003. Measuring bidirectional texture reflectance with a kaleidoscope. ACM Trans. Graph. 22, 3, 741–748. 
    17. X. D. He, K. E. Torrance, F. X. Sillion, and D. P. Greenberg, 1991. A comprehensive physical model for light reflection. SIGGRAPH Comput. Graph. 25, 4, 175–186. 
    18. J. T. Kajiya, 1985. Anisotropic reflection models. SIGGRAPH Comput. Graph. 19, 3, 15–21. 
    19. E. P. F. Lafortune, S.-C. Foo, K. E. Torrance, and D. P. Greenberg. 1997. Non-linear approximation of reflectance functions. In Proceedings of SIGGRAPH. 117–126. 
    20. H. P. A. Lensch, J. Kautz, M. Goesele, W. Heidrich, and H.-P. Seidel, 2003. Image-based reconstruction of spatial appearance and geometric detail. ACM Trans. Graph. 22, 2, 234–257. 
    21. A. Levin, D. Glasner, Y. Xiong, F. Durand, W. Freeman, W. Matusik, and T. Zickler. 2013. Fabricating brdfs at high spatial resolution using wave optics. ACM Trans. Graph. 32, 4, 144:1–144:14. 
    22. H. Li, S. C. Foo, K. E. Torrance, and S. H. Westin. 2005. Automated three-axis gonioreflectometer for computer graphics applications. Opt. Eng. 45, 4.
    23. H. Li and K. E. Torrance. 2005. An experimental study of the correlation between surface roughness and light scattering for rough metallic surfaces. Proc. SPIE 5878
    24. J. Löw, J. Kronander, A. Ynnerman, and J. Unger. 2012. Brdf models for accurate and efficient rendering of glossy surfaces. ACM Trans. Graph. 31, 1, 9:1–9:14. 
    25. L. Mandel and E. Wolf. 1995. Optical Coherence and Quantum Optics. Cambridge University Press.
    26. E. Marx and T. V. Vorburger. 1990. Direct and inverse problems for light scattered by rough surfaces. Appl. Opt. 29, 25, 3613–3626.
    27. H. Mashaal, A. Goldstein, D. Feuermann, and J. M. Gordon, 2012. First direct measurement of the spatial coherence of sunlight. Opt. Lett. 37, 17, 3516–3518.
    28. M. E. McKnight, T. V. Vorburger, E. Marx, M. E. Nadal, M. E., P. Y. Barnes, and M. A. Galler. 2001. Measurements and predictions of light scattering by clear coatings. Appl. Opt. 40, 13, 2159–2168.
    29. G. Müller, J. Meseth, M. Sattler, R. Sarlette, and R. Klein. 2005. Acquisition, synthesis, and rendering of bidirectional texture functions. Comput. Graph. Forum 24, 1, 83–109.
    30. A. Ngan, F. Durand, and W. Matusik. 2005a. Experimental analysis of brdf models. In Rendering Techniques 2005: 16th Eurographics Workshop on Rendering. 117–126. 
    31. A. Ngan, F. Durand, and W. Matusik. 2005b. Experimental analysis of brdf models. In Proceedings of EGSR. 117–126. 
    32. J. Ogilvy. 1991. Theory of Wave Scattering from Random Rough Surfaces. A. Hilger.
    33. S. Schröder, A. Duparré, L. Coriand, A. Tünnermann, D. H. Penalver, and J. E. Harvey. 2011. Modeling of light scattering in different regimes of surface roughness. Optics Express 19, 9820.
    34. J. Stam. 1999. Diffraction shaders. In Proceedings of SIGGRAPH. 101–110. 
    35. L.-P. Sung, M. Nadal, M. E. McKnight, E. Marx, and B. Laurenti. 2002. Optical reflectance of metallic coatings: Effect of aluminum flake orientation. J. Coatings Technology 74, 932, 55–63.
    36. K. E. Torrance, and E. M. Sparrow. 1967. Theory for off-specular reflection from roughened surfaces. J. Opt. Soc. Am. A 9, 1105–1114.
    37. T. S. Trowbridge and K. P. Reitz, 1975. Average irregularity representation of a rough surface for ray reflection. J. Opt. Soc. Am. 65, 5, 531–536.
    38. B. Walter, S. R. Marschner, H. Li, and K. E. Torrance, 2007. Microfacet models for refraction through rough surfaces. In Proceedings of EGSR. 195–206. 
    39. J. Wang, S. Zhao, X. Tong, J. Snyder, and B. Guo. 2008. Modeling anisotropic surface reflectance with example-based microfacet synthesis. ACM Trans. Graph. 27, 3, 41:1–41:9. 
    40. G. J. Ward. 1992. Measuring and modeling anisotropic reflection. SIGGRAPH Comput. Graph. 26, 2, 265–272. 
    41. L.-Q. Yan, M. Hašan, W. Jakob, J. Lawrence, S. Marschner, and R. Ramamoorthi. 2014. Rendering glints on high-resolution normal-mapped specular surfaces. ACM Trans. Graph. 33, 4, 116:1–116:9. 
    42. S. Zhao, W. Jakob, S. Marschner, and K. Bala. 2011. Building volumetric appearance models of fabric using micro ct imaging. ACM Trans. Graph. 30, 4, 44:1–44:10. 
    43. Zygo. 2011. NewviewTM 7300 3d optical surface profiler. http://www.zygo.com/?/met/profilers/newview7000/.

ACM Digital Library Publication:



Overview Page: