“Practical SVBRDF capture in the frequency domain” by Aittala, Weyrich and Lehtinen

  • ©Miika Aittala, Tim Weyrich, and Jaakko Lehtinen




    Practical SVBRDF capture in the frequency domain

Session/Category Title: Materials




    Spatially-varying reflectance and small geometric variations play a vital role in the appearance of real-world surfaces. Consequently, robust, automatic capture of such models is highly desirable; however, current systems require either specialized hardware, long capture times, user intervention, or rely heavily on heuristics. We describe an acquisition setup that utilizes only portable commodity hardware (an LCD display, an SLR camera) and contains no moving parts. In particular, a laptop screen can be used for illumination. Our setup, aided by a carefully constructed image formation model, automatically produces realistic spatially-varying reflectance parameters over a wide range of materials from diffuse to almost mirror-like specular surfaces, while requiring relatively few photographs. We believe our system is the first to offer such generality, while requiring only standard office equipment and no user intervention or parameter tuning. Our results exhibit a good qualitative match to photographs taken under novel viewing and lighting conditions for a range of materials.


    1. Blinn, J. F. 1977. Models of light reflection for computer synthesized pictures. Computer Graphics (Proc. SIGGRAPH) 11, 2 (July), 192–198. Google ScholarDigital Library
    2. Bonfort, T., Sturm, P., and Gargallo, P. 2006. General specular surface triangulation. In Proc. Asian Conference on Computer Vision, vol. II, 872–881. Google ScholarDigital Library
    3. Chen, T., Goesele, M., and Seidel, H.-P. 2006. Mesostructure from specularity. In Proc. IEEE Conference on Computer Vision and Pattern Recognition, 1825–1832. Google ScholarDigital Library
    4. Chuang, Y.-Y., Zongker, D. E., Hindorff, J., Curless, B., Salesin, D. H., and Szeliski, R. 2000. Environment matting extensions: towards higher accuracy and real-time capture. In Proc. SIGGRAPH, 121–130. Google ScholarDigital Library
    5. Clark, R., 2010. Crazybump, www.crazybump.com.Google Scholar
    6. Coleman, E., and Jain, R. 1982. Obtaining 3-dimensional shape of textured and specular surfaces using four-source photometry. Computer Graphics and Image Processing 18, 309–328.Google ScholarCross Ref
    7. Dana, K. J., and Wang, J. 2004. Device for convenient measurement of spatially varying bidirectional reflectance. Journal of the Optical Society of America A 21, 1, 1–12.Google ScholarCross Ref
    8. Dong, Y., Wang, J., Tong, X., Snyder, J., Lan, Y., Ben-Ezra, M., and Guo, B. 2010. Manifold bootstrapping for SVBRDF capture. ACM Transactions on Graphics (Proc. SIGGRAPH) 29, 4 (July), 98:1–98:10. Google ScholarDigital Library
    9. Dong, Y., Tong, X., Pellacini, F., and Guo, B. 2011. Appgen: interactive material modeling from a single image. ACM Transactions on Graphics (Proc. SIGGRAPH ASIA) 30, 6 (Dec.), 146:1–146:10. Google ScholarDigital Library
    10. Francken, Y., Cuypers, T., Mertens, T., and Gielis, J. 2008. High quality mesostructure acquisition using specularities. In Proc. IEEE Conference on Computer Vision and Pattern Recognition, 1–7.Google Scholar
    11. Gardner, A., Tchou, C., Hawkins, T., and Debevec, P. 2003. Linear light source reflectometry. ACM Transactions on Graphics (Proc. SIGGRAPH) 22, 3 (July), 749–758. Google ScholarDigital Library
    12. Ghosh, A., Achutha, S., Heidrich, W., and O’Toole, M. 2007. BRDF acquisition with basis illumination. In Proc. IEEE International Conference on Computer Vision, 1–8.Google ScholarCross Ref
    13. Ghosh, A., Chen, T., Peers, P., Wilson, C. A., and Debevec, P. E. 2009. Estimating specular roughness and anisotropy from second order spherical gradient illumination. Computer Graphics Forum (Proc. Eurographics Symposium on Rendering) 28, 4, 1161–1170. Google ScholarDigital Library
    14. Ghosh, A., Chen, T., Peers, P., Wilson, C. A., and Debevec, P. 2010. Circularly polarized spherical illumination reflectometry. ACM Transactions on Graphics (Proc. SIGGRAPH ASIA) 29, 6 (Dec.), 162:1–162:12. Google ScholarDigital Library
    15. Glencross, M., Ward, G., Jay, C., Liu, J., Melendez, F., and Hubbold, R. 2008. A perceptually validated model for surface depth hallucination. ACM Transactions on Graphics (Proc. SIGGRAPH) 27, 3 (Aug.), 59:1–59:8. Google ScholarDigital Library
    16. Goldman, D., Curless, B., Hertzmann, A., and Seitz, S. 2005. Shape and spatially-varying BRDFs from photometric stereo. In Proc. IEEE International Conference on Computer Vision, vol. 1, 341–348. Google ScholarDigital Library
    17. Holroyd, M., Lawrence, J., Humphreys, G., and Zickler, T. 2008. A photometric approach for estimating normals and tangents. ACM Transactions on Graphics (Proc. SIGGRAPH) 27, 3 (Dec.), 133:1–133:9. Google ScholarDigital Library
    18. Holroyd, M., Lawrence, J., and Zickler, T. 2010. A coaxial optical scanner for synchronous acquisition of 3D geometry and surface reflectance. ACM Transactions on Graphics (Proc. SIGGRAPH) 29, 4 (July), 99:1–99:12. Google ScholarDigital Library
    19. Ikeuchi, K. 1981. Determining surface orientation of specular surfaces by using the photometric stereo method. IEEE Transactions on Pattern Analysis and Machine Intelligence 3, 6, 661–669. Google ScholarDigital Library
    20. Kopf, J., Cohen, M. F., Lischinski, D., and Uyttendaele, M. 2007. Joint bilateral upsampling. ACM Transactions on Graphics (Proc. SIGGRAPH) 26, 3 (July), 96:1–96:6. Google ScholarDigital Library
    21. Lawrence, J., Ben-Artzi, A., DeCoro, C., Matusik, W., Pfister, H., Ramamoorthi, R., and Rusinkiewicz, S. 2006. Inverse shade trees for non-parametric material representation and editing. ACM Transactions on Graphics (Proc. SIGGRAPH) 25, 3 (July), 735–745. Google ScholarDigital Library
    22. Lensch, H. P. A., Kautz, J., Goesele, M., Heidrich, W., and Seidel, H.-P. 2003. Image-based reconstruction of spatial appearance and geometric detail. ACM Transactions on Graphics 22, 2 (Apr.), 234–257. Google ScholarDigital Library
    23. Löw, J., Kronander, J., Ynnerman, A., and Unger, J. 2012. BRDF models for accurate and efficient rendering of glossy surfaces. ACM Transactions on Graphics 31, 1 (Jan.), 9:1–9:14. Google ScholarDigital Library
    24. Nayar, S., Ikeuchi, K., and Kanade, T. 1990. Determining shape and reflectance of hybrid surfaces by photometric sampling. IEEE Transactions on Robotics and Automation 6, 4, 418–431.Google ScholarCross Ref
    25. Nehab, D., Weyrich, T., and Rusinkiewicz, S. 2008. Dense 3D reconstruction from specular consistency. In Proc. IEEE Conference on Computer Vision and Pattern Recognition, 1–8.Google Scholar
    26. Ngan, A., Durand, F., and Matusik, W. 2005. Experimental analysis of BRDF models. In Proc. Eurographics Symposium on Rendering, 117–226. Google ScholarDigital Library
    27. Ramamoorthi, R., and Hanrahan, P. 2001. A signal processing framework for inverse rendering. In Proc. SIGGRAPH, 117–128. Google ScholarDigital Library
    28. Ren, P., Wang, J., Snyder, J., Tong, X., and Guo, B. 2011. Pocket reflectometry. ACM Transactions on Graphics (Proc. SIGGRAPH) 30, 4 (July), 45:1–45:10. Google ScholarDigital Library
    29. Sato, I., Okabe, T., Sato, Y., and Ikeuchi, K. 2003. Appearance sampling for obtaining a set of basis images for variable illumination. In Proc. IEEE International Conference on Computer Vision, 800–807 Vol. 2. Google ScholarDigital Library
    30. Wang, C.-P., Snavely, N., and Marschner, S. 2011. Estimating dual-scale properties of glossy surfaces from step-edge lighting. ACM Transactions on Graphics (Proc. SIGGRAPH ASIA) 30, 6 (Dec.), 172:1–172:12. Google ScholarDigital Library
    31. Weyrich, T., Matusik, W., Pfister, H., Bickel, B., Donner, C., Tu, C., McAndless, J., Lee, J., Ngan, A., Jensen, H. W., and Gross, M. 2006. Analysis of human faces using a measurement-based skin reflectance model. ACM Transactions on Graphics (Proc. SIGGRAPH) 25, 3 (July), 1013–1024. Google ScholarDigital Library
    32. Weyrich, T., Lawrence, J., Lensch, H., Rusinkiewicz, S., and Zickler, T. 2008. Principles of appearance acquisition and representation. Foundations and Trends in Computer Graphics and Vision 4, 2, 75–191. Google ScholarDigital Library
    33. Woodham, R. J. 1978. Photometric stereo: A reflectance map technique for determining surface orientation from image intensity. In Proc. SPIE, vol. 155, 136–143.Google Scholar
    34. Zhu, J., and Yang, Y.-H. 2004. Frequency-based environment matting. In Computer Graphics and Applications (Proc. Pacific Graphics), 402–410. Google ScholarDigital Library
    35. Zickler, T., Belhumeur, P. N., and Kriegman, D. J. 2002. Helmholtz stereopsis: Exploiting reciprocity for surface reconstruction. International Journal of Computer Vision 49, 2/3, 215–227. Google ScholarDigital Library

ACM Digital Library Publication:

Overview Page: