“Practical Acquisition and Rendering of Diffraction Effects in Surface Reflectance” by Toisoul and Ghosh

  • ©Antoine Toisoul and Abhijeet Ghosh




    Practical Acquisition and Rendering of Diffraction Effects in Surface Reflectance

Session/Category Title: Reflectance & Scattering




    We propose two novel contributions for measurement-based rendering of diffraction effects in surface reflectance of planar homogeneous diffractive materials. As a general solution for commonly manufactured materials, we propose a practical data-driven rendering technique and a measurement approach to efficiently render complex diffraction effects in real time. Our measurement step simply involves photographing a planar diffractive sample illuminated with an LED flash. Here, we directly record the resultant diffraction pattern on the sample surface due to a narrow-band point source illumination. Furthermore, we propose an efficient rendering method that exploits the measurement in conjunction with the Huygens-Fresnel principle to fit relevant diffraction parameters based on a first-order approximation. Our proposed data-driven rendering method requires the precomputation of a single diffraction look-up table for accurate spectral rendering of complex diffraction effects. Second, for sharp specular samples, we propose a novel method for practical measurement of the underlying diffraction grating using out-of-focus “bokeh” photography of the specular highlight. We demonstrate how the measured bokeh can be employed as a height field to drive a diffraction shader based on a first-order approximation for efficient real-time rendering. Finally, we also drive analytic solutions for a few special cases of diffraction from our measurements and demonstrate realistic rendering results under complex light sources and environments.


    1. Emmanuel Agu and Francis S. Hill Jr. 2002. Diffraction shading models for iridescent surfaces. In Proceedings of the IASTED VIIP.Google Scholar
    2. R. L. Cook and K. E. Torrance. 1982. A reflectance model for computer graphics. ACM Trans. Graph. 1, 1 (Jan. 1982), 7–24. Google ScholarDigital Library
    3. J. M. Cowley. 1995. Diffraction Physics. Elsevier Science.Google Scholar
    4. Tom Cuypers, Tom Haber, Philippe Bekaert, Se Baek Oh, and Ramesh Raskar. 2012. Reflectance model for diffraction. ACM Trans. Graph. 31, 5 (Sept. 2012), Article 122, 11 pages. Google ScholarDigital Library
    5. Paul Debevec. 2001. High-Resolution Light Probe Image Gallery. Retrieved from http://gl.ict.usc.edu/Data/HighResProbes/.Google Scholar
    6. Paul E. Debevec and Jitendra Malik. 1997. Recovering high dynamic range radiance maps from photographs. In Proceedings of the 24th Annual Conference on Computer Graphics and Interactive Techniques (SIGGRAPH’97). ACM Press/Addison-Wesley Publishing Co., New York, NY, 369–378. Google ScholarDigital Library
    7. D. S. Dhillon, J. Teyssier, M. Single, I. Gaponenko, M. C. Milinkovitch, and M. Zwicker. 2014. Interactive diffraction from biological nanostructures. Comput. Graph. Forum 33, 8 (Dec. 2014), 177–188. Google ScholarDigital Library
    8. Daljit Singh J. Dhillon and Abhijeet Ghosh. 2016. Efficient surface diffraction renderings with chebyshev approximations. In Proceedings of the SIGGRAPH ASIA 2016 Technical Briefs (SA’16). ACM, New York, NY, Article 7, 4 pages. Google ScholarDigital Library
    9. Zhao Dong, Bruce Walter, Steve Marschner, and Donald P. Greenberg. 2015. Predicting appearance from measured microgeometry of metal surfaces. ACM Trans. Graph. 35, 1, Article 9 (Dec. 2015), 13 pages. Google ScholarDigital Library
    10. Edmund Optics. 2016. Diffraction Limit. Retrieved November 10, 2016 from http://www.edmundoptics.com/resources/application-notes/imaging/diffraction-limit/.Google Scholar
    11. O. K. Ersoy. 2006. Diffraction, Fourier Optics and Imaging. Wiley. https://books.google.co.uk/books?id=hpyUlD4OEdsC.Google Scholar
    12. Jeppe Revall Frisvad, Niels Jørgen Christensen, and Henrik Wann Jensen. 2007. Computing the scattering properties of participating media using lorenz-mie theory. ACM Trans. Graph. 26, 3, Article 60 (July 2007). Google ScholarDigital Library
    13. Abhijeet Ghosh, Tongbo Chen, Pieter Peers, Cyrus A. Wilson, and Paul Debevec. 2009. Estimating specular roughness and anisotropy from second order spherical gradient illumination. Comput. Graph. Forum 28, 4 (2009), 1161–1170. Google ScholarDigital Library
    14. Xavier Granier and Wolfgang Heidrich. 2003. A simple layered RGB BRDF model. Graph. Models 65, 4 (July 2003), 171–184. Google ScholarDigital Library
    15. Xiao D. He, Kenneth E. Torrance, François X. Sillion, and Donald P. Greenberg. 1991. A comprehensive physical model for light reflection. SIGGRAPH Comput. Graph. 25, 4 (1991), 175–186. Google ScholarDigital Library
    16. Eugene Hecht. 2014. Optics. Harlow: Pearson Education Limited.Google Scholar
    17. Matthias B. Hullin, Elmar Eisemann, Hans-Peter Seidel, and Sungkil Lee. 2011. Physically-based real-time lens flare rendering. ACM Trans. Graph. (Proc. SIGGRAPH 2011) 30, 4 (2011), 108:1–108:9. Google ScholarDigital Library
    18. Matthias B. Hullin, Johannes Hanika, Boris Ajdin, Hans-Peter Seidel, Jan Kautz, and Hendrik P. A. Lensch. 2010. Acquisition and analysis of bispectral bidirectional reflectance and reradiation distribution functions. ACM Trans. Graph. 29, 4 (July 2010), Article 97, 7 pages. Google ScholarDigital Library
    19. Masataka Imura, Osamu Oshiro, Masahiko Saeki, Yoshitsugu Manabe, Kunihiro Chihara, and Yoshihiro Yasumuro. 2009. A generic real-time rendering approach for structural colors. In Proceedings of the 16th ACM Symposium on Virtual Reality Software and Technology (VRST’09). ACM, New York, NY, 95–102. Google ScholarDigital Library
    20. Young-Min Kang, Do-Hoon Lee, and Hwan-Gue Cho. 2015. Multipeak anisotropic microfacet model for iridescent surfaces. Multimedia Tools Appl. 74, 16 (Aug. 2015), 6229–6242. Google ScholarDigital Library
    21. Anat Levin, Daniel Glasner, Ying Xiong, Frédo Durand, William Freeman, Wojciech Matusik, and Todd Zickler. 2013. Fabricating BRDFs at high spatial resolution using wave optics. ACM Trans. Graph. 32, 4, Article 144 (July 2013), 14 pages. Google ScholarDigital Library
    22. Marc Levoy, Ren Ng, Andrew Adams, Matthew Footer, and Mark Horowitz. 2006. Light field microscopy. ACM Trans. Graph. 25, 3 (July 2006), 924–934. Google ScholarDigital Library
    23. Clifford Lindsay and Emmanuel Agu. 2006. Physically-based real-time diffraction using spherical harmonics. In Proceedings of the Second International Conference on Advances in Visual Computing, Volume Part I (ISVC’06). Springer-Verlag, Berlin, 505–517. Google ScholarDigital Library
    24. Stephen R. Marschner, Stephen H. Westin, Eric P. F. Lafortune, Kenneth E. Torrance, and Donald P. Greenberg. 1999. Image-based BRDF measurement including human skin. In Rendering Techniques. Google ScholarDigital Library
    25. Heylal Mashaal, Alex Goldstein, Daniel Feuermann, and Jeffrey M. Gordon. 2012. First direct measurement of the spatial coherence of sunlight. Opt. Lett. 37, 17 (2012), 3516–3518.Google ScholarCross Ref
    26. Wojciech Matusik, Hanspeter Pfister, Matt Brand, and Leonard McMillan. 2003. A data-driven reflectance model. In ACM Trans. Graph. 759–769. Google ScholarDigital Library
    27. Stephen McAuley, Stephen Hill, Adam Martinez, Ryusuke Villemin, Matt Pettineo, Dimitar Lazarov, David Neubelt, Brian Karis, Christophe Hery, Naty Hoffman, and Hakan Zap Andersson. 2013. Physically based shading in theory and practice. In Proceedings of the ACM SIGGRAPH 2013 Courses (SIGGRAPH’13). ACM, New York, NY, Article 22, 8 pages. Google ScholarDigital Library
    28. Ankit Mohan, Grace Woo, Shinsaku Hiura, Quinn Smithwick, and Ramesh Raskar. 2009. Bokode: Imperceptible visual tags for camera based interaction from a distance. ACM Trans. Graph. 28, 3 (July 2009), Article 98, 8 pages. Google ScholarDigital Library
    29. A. Musbach, G. W. Meyer, F. Reitich, and S. H. Oh. 2013. Full wave modelling of light propagation and reflection. Comput. Graph. Forum 32, 6 (Sept. 2013), 24–37. Google ScholarDigital Library
    30. Addy Ngan, Frédo Durand, and Wojciech Matusik. 2005. Experimental analysis of BRDF models. In Rendering Techniques. 117–226. Google ScholarDigital Library
    31. Se Baek Oh, Sriram Kashyap, Rohit Garg, Sharat Chandran, and Ramesh Raskar. 2010. Rendering wave effects with augmented light field. Comput. Graph. Forum 29, 2 (2010), 507–516.Google ScholarCross Ref
    32. Iman Sadeghi, Adolfo Munoz, Philip Laven, Wojciech Jarosz, Francisco Seron, Diego Gutierrez, and Henrik Wann Jensen. 2012. Physically-based simulation of rainbows. ACM Trans. Graph. 31, 1 (Feb. 2012), Article 3, 12 pages. Google ScholarDigital Library
    33. Jos Stam. 1999. Diffraction shaders. In Proceedings of the 26th Annual Conference on Computer Graphics and Interactive Techniques (SIGGRAPH’99). ACM Press/Addison-Wesley, New York, NY, 101–110. Google ScholarDigital Library
    34. Henry Stark. 2012. Application of Optical Fourier Transforms. Elsevier. Google ScholarDigital Library
    35. Yinlong Sun. 2000. A Spectrum-based Framework for Realistic Image Synthesis. Ph.D. Dissertation. Advisor(s) Fracchia, F. David. AAINQ61686. Google ScholarDigital Library
    36. Yinlong Sun. 2006. Rendering biological iridescences with RGB-based renderers. ACM Trans. Graph. 25, 1 (Jan. 2006), 100–129. Google ScholarDigital Library
    37. Yinlong Sun, Mark S. Drew, and F. David Fracchia. 1999a. Representing spectral functions by a composite model of smooth and spiky components for efficient full-spectrum photorealism. In Proceedings of the 1999 IEEE Workshop on Photometric Modeling for Computer Vision and Graphics (PMCVG’99). IEEE Computer Society, Washington, DC. http://dl.acm.org/citation.cfm?id=519626.826724. Google ScholarDigital Library
    38. Yinlong Sun, F. David Fracchia, Thomas W. Calvert, and Mark S. Drew. 1999b. Deriving spectra from colors and rendering light interference. IEEE Comput. Graph. Appl. 19, 4 (July 1999), 61–67. Google ScholarDigital Library
    39. Yinlong Sun, F. David Fracchia, Mark S. Drew, and Thomas W. Calvert. 2000. Rendering iridescent colors of optical disks. In Proceedings of the Eurographics Workshop on Rendering Techniques 2000. Springer-Verlag, London, UK, 341–352. http://dl.acm.org/citation.cfm?id=647652.732138. Google ScholarDigital Library
    40. ThorLabs. 2015. Visible Ruled Reflective Diffraction Gratings. Retrieved August 20, 2015 from https://www.thorlabs.de/newgrouppage9.cfm?object group_id=8626.Google Scholar
    41. Nicolas Tsingos, Thomas Funkhouser, Addy Ngan, and Ingrid Carlbom. 2001. Modeling acoustics in virtual environments using the uniform theory of diffraction. In Proceedings of the 28th Annual Conference on Computer Graphics and Interactive Techniques (SIGGRAPH’01). ACM, New York, NY, 545–552. Google ScholarDigital Library
    42. Chun-Po Wang, Noah Snavely, and Steve Marschner. 2011. Estimating dual-scale properties of glossy surfaces from step-edge lighting. ACM Trans. Graph. 30, 6 (Dec. 2011), Article 172, 12 pages. Google ScholarDigital Library
    43. Jiaping Wang, Shuang Zhao, Xin Tong, John Snyder, and Baining Guo. 2008. Modeling anisotropic surface reflectance with example-based microfacet synthesis. ACM Trans. Graph. 27, 3, Article 41 (Aug. 2008), 9 pages. Google ScholarDigital Library
    44. Gregory J. Ward. 1992. Measuring and modeling anisotropic reflection. SIGGRAPH Comput. Graph. 26, 2 (July 1992), 265–272. Google ScholarDigital Library
    45. T. Wilson, M. A. A. Neil, and R. Juskaitis. 1998. Real-time three-dimensional imaging of macroscopic structures. J. Microsc. 191, 2 (1998), 116–118.Google ScholarCross Ref
    46. Fu-Kun Wu and Chang-Wen Zheng. 2013. A comprehensive geometrical optics application for wave rendering. Graph. Models 75, 6 (Nov. 2013), 318–327. Google ScholarDigital Library
    47. Genzhi Ye, Sundeep Jolly, V. Micheal Bove, Qionghai Dai, Ramesh Raskar, and Gordon Wetzstein. 2014. Toward BxDF display using multilayer diffraction. ACM Trans. Graph. (SIGGRAPH Asia) 33, 6 (2014). Google ScholarDigital Library
    48. Remo Ziegler, Simone Croci, and Markus Gross. 2008. Lighting and occlusion in a wave-based framework. Comput. Graph. Forum 27, 2 (2008), 211–220.Google ScholarCross Ref

ACM Digital Library Publication:

Overview Page: