“Position-correcting tools for 2D digital fabrication” by Rivers, Moyer and Durand

  • ©Alec Rivers, Ilan E. Moyer, and Frédo Durand




    Position-correcting tools for 2D digital fabrication



    Many kinds of digital fabrication are accomplished by precisely moving a tool along a digitally-specified path. This precise motion is typically accomplished fully automatically using a computer-controlled multi-axis stage. With that approach, one can only create objects smaller than the positioning stage, and large stages can be quite expensive. We propose a new approach to precise positioning of a tool that combines manual and automatic positioning: in our approach, the user coarsely positions a frame containing the tool in an approximation of the desired path, while the device tracks the frame’s location and adjusts the position of the tool within the frame to correct the user’s positioning error in real time. Because the automatic positioning need only cover the range of the human’s positioning error, this frame can be small and inexpensive, and because the human has unlimited range, such a frame can be used to precisely position tools over an unlimited range.


    1. Al-Kindi, G., Baul, R., and Gill, K. 1993. Vision-controlled CNC machines. Computing and Control Engineering Journal 4, 2, 92–96.Google ScholarCross Ref
    2. Alexa, M., and Matusik, W. 2010. Reliefs as images. ACM Trans. Graph. 29, 4 (July), 60:1–60:7. Google ScholarDigital Library
    3. Bickel, B., Bächer, M., Otaduy, M. A., Lee, H. R., Pfister, H., Gross, M., and Matusik, W. 2010. Design and fabrication of materials with desired deformation behavior. ACM Trans. Graph. 29, 4 (July), 63:1–63:10. Google ScholarDigital Library
    4. Denso-Wave Incorporated. QR Code Specification. http://www.denso-wave.com/qrcode/index-e.html.Google Scholar
    5. Dong, Y., Wang, J., Pellacini, F., Tong, X., and Guo, B. 2010. Fabricating spatially-varying subsurface scattering. ACM Trans. Graph. 29, 4 (July), 62:1–62:10. Google ScholarDigital Library
    6. Drumm, B., 2011. Printrbot. http://www.printrbot.com/.Google Scholar
    7. Eigensatz, M., Kilian, M., Schiftner, A., Mitra, N. J., Pottmann, H., and Pauly, M. 2010. Paneling architectural freeform surfaces. ACM Trans. Graph. 29, 4 (July), 45:1–45:10. Google ScholarDigital Library
    8. Ferraiolo, J., Fujisawa, J., and Jackson, D., 2003. Scalable Vector Graphics (SVG) 1.1 Specification. World Wide Web Consortium, Recommendation REC-SVG11-20030114.Google Scholar
    9. Fischler, M. A., and Bolles, R. C. 1981. Random sample consensus: a paradigm for model fitting with applications to image analysis and automated cartography. Communications of the ACM 24, 6 (June), 381–395. Google ScholarDigital Library
    10. Getting, I. 1993. Perspective/navigation-The Global Positioning System. IEEE Spectrum 30, 12, 36–38, 43–47. Google ScholarDigital Library
    11. Gross, M. 2009. Now more than ever: Computational thinking and a science of design. Japan Society for the Science of Design 16, 2, 50–54.Google Scholar
    12. Hašan, M., Fuchs, M., Matusik, W., Pfister, H., and Rusinkiewicz, S. 2010. Physical reproduction of materials with specified subsurface scattering. ACM Trans. Graph. 29, 4 (July), 61:1–61:10. Google ScholarDigital Library
    13. Hokanson, T., and Reilly, C. DIYLILCNC. http://diylilcnc.org/.Google Scholar
    14. Kelly, S. Bluumax CNC. http://www.bluumaxcnc.com/Gantry-Router.html.Google Scholar
    15. Kilian, M., Flöry, S., Chen, Z., Mitra, N. J., Sheffer, A., and Pottmann, H. 2008. Curved folding. ACM Trans. Graph. 27, 3 (Aug.), 75:1–75:9. Google ScholarDigital Library
    16. Kragic, D., Kragic, D., Marayong, P., Li, M., Okamura, A. M., and Hager, G. D. 2005. Human-machine collaborative systems for microsurgical applications. International Journal of Robotics Research 24, 731–741. Google ScholarDigital Library
    17. Landay, J. A. 2009. Technical perspective: Design tools for the rest of us. Commun. ACM 52, 12 (Dec.), 80–80. Google ScholarDigital Library
    18. Lau, M., Ohgawara, A., Mitani, J., and Igarashi, T. 2011. Converting 3D furniture models to fabricatable parts and connectors. ACM Trans. Graph. 30, 4 (Aug.), 85:1–85:6. Google ScholarDigital Library
    19. LG. LSM-100. http://www.lg.com/ae/it-products/external-hard-disk/LG-LSM-100.jsp.Google Scholar
    20. MakerBot Industries. MakerBot. http://www.makerbot.com/.Google Scholar
    21. Mako Surgical. RIO Robotic Arm Interactive System.Google Scholar
    22. Moeslund, T. B., Hilton, A., and Krüger, V. 2006. A survey of advances in vision-based human motion capture and analysis. Computer Vision and Image Understanding 104, 2-3 (Nov.), 90–126. Google ScholarDigital Library
    23. Mori, Y., and Igarashi, T. 2007. Plushie: an interactive design system for plush toys. ACM Trans. Graph. 26, 3 (Aug.), 45:1–45:7. Google ScholarDigital Library
    24. Otsu, N. 1979. A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9, 1, 62–66.Google ScholarCross Ref
    25. Priyantha, N. B., Chakraborty, A., and Balakrishnan, H. 2000. The Cricket location-support system. In Proceedings of the 6th Annual International Conference on Mobile Computing and Networking, ACM Press, MobiCom ’00, 32–43. Google ScholarDigital Library
    26. Saul, G., Lau, M., Mitani, J., and Igarashi, T. 2011. SketchChair: an all-in-one chair design system for end users. In Proceedings of the Fifth International Conference on Tangible, Embedded, and Embodied Interaction, ACM Press, TEI ’11, 73–80. Google ScholarDigital Library
    27. Sells, E., Smith, Z., Bailard, S., Bowyer, A., and Olliver, V. 2009. RepRap: The Replicating Rapid Prototyper-maximizing customizability by breeding the means of production. Handbook of Research in Mass Customization and Personalization 1, 568–580.Google ScholarCross Ref
    28. Shiratori, T., Park, H. S., Sigal, L., Sheikh, Y., and Hodgins, J. K. 2011. Motion capture from body-mounted cameras. ACM Trans. Graph. 30, 4 (July), 31:1–31:10. Google ScholarDigital Library
    29. ShopBot Tools. ShopBot. http://www.shopbottools.com/.Google Scholar
    30. Szeliski, R. 2006. Image alignment and stitching: a tutorial. Found. Trends. Comput. Graph. Vis. 2, 1 (Jan.), 1–104. Google ScholarDigital Library
    31. Techno CNC Router Systems. TechnoVision.Google Scholar
    32. Triggs, B., McLauchlan, P. F., Hartley, R. I., and Fitzgibbon, A. W. 2000. Bundle adjustment – A modern synthesis. In Proceedings of the International Workshop on Vision Algorithms: Theory and Practice, Springer-Verlag, ICCV ’99, 298–372. Google ScholarDigital Library
    33. Welch, G., and Foxlin, E. 2002. Motion tracking: no silver bullet, but a respectable arsenal. IEEE Comput. Graph. Appl. 22, 6 (Nov.), 24–38. Google ScholarDigital Library
    34. Weyrich, T., Deng, J., Barnes, C., Rusinkiewicz, S., and Finkelstein, A. 2007. Digital bas-relief from 3D scenes. ACM Trans. Graph. 26, 3 (Aug.), 32:1–32:7. Google ScholarDigital Library
    35. Xin, S., Lai, C.-F., Fu, C.-W., Wong, T.-T., He, Y., and Cohen-Or, D. 2011. Making burr puzzles from 3D models. ACM Trans. Graph. 30, 4 (July), 97:1–97:8. Google ScholarDigital Library
    36. Zahnert, M. G., Fonseka, E., and Ilic, A., 2010. Handheld Scanner with High Image Quality. U. S. Patent US 2010/0296140 A1.Google Scholar
    37. Zitova, B., and Flusser, J. 2003. Image registration methods: a survey. Image and Vision Computing 21, 11 (Oct.), 977–1000.Google ScholarCross Ref

ACM Digital Library Publication:

Overview Page: