“Porous flow in particle-based fluid simulations” by Lenaerts, Adams and Dutré

  • ©Toon Lenaerts, Bart Adams, and Philip Dutré




    Porous flow in particle-based fluid simulations



    This paper presents the simulation of a fluid flowing through a porous deformable material. We introduce the physical principles governing porous flow, expressed by the Law of Darcy, into the Smoothed Particle Hydrodynamics (SPH) framework for simulating fluids and deformable objects. Contrary to previous SPH approaches, we simulate porous flow at a macroscopic scale, making abstraction of individual pores or cavities inside the material. Thus, the number of computational elements is kept low, while at the same time realistic simulations can be achieved. Our algorithm models the changing behavior of the wet material as well as the full two-way coupling between the fluid and the porous material. This enables various new effects, such as the simulation of sponge-like elastic bodies and water-absorbing sticky cloth.


    1. Adams, B., Pauly, M., Keiser, R., and Guibas, L. J. 2007. Adaptively sampled particle fluids. In SIGGRAPH ’07: ACM SIGGRAPH 2007 papers, ACM, New York, NY, USA, 48. Google ScholarDigital Library
    2. Bear, J. 1972. Dynamics of Fluids in Porous Media. Dover Publications.Google Scholar
    3. Becker, M., and Teschner, M. 2007. Weakly compressible SPH for free surface flows. In SCA ’07: Proceedings of the 2007 ACM SIGGRAPH/Eurographics symposium on Computer animation, 209–217. Google ScholarDigital Library
    4. Bell, N., Yu, Y., and Mucha, P. J. 2005. Particle-based simulation of granular materials. In SCA ’05: Proceedings of the 2005 ACM SIGGRAPH/Eurographics symposium on Computer animation, ACM Press, New York, NY, USA, 77–86. Google ScholarDigital Library
    5. Berry, R. A., Martineau, R. C., and Wood, T. R. 2004. Particle-based direct numerical simulation of contaminant transport and deposition in porous flow. Vadose Zone Journal 3, 1 (February), 164–169.Google ScholarCross Ref
    6. Carlson, M., Mucha, P. J., and Turk, G. 2004. Rigid fluid: animating the interplay between rigid bodies and fluid. ACM Trans. Graph. 23, 3, 377–384. Google ScholarDigital Library
    7. Chu, N. S.-H., and Tai, C.-L. 2005. Moxi: real-time ink dispersion in absorbent paper. In SIGGRAPH ’05: ACM SIGGRAPH 2005 Papers, ACM Press, New York, NY, USA, 504–511. Google ScholarDigital Library
    8. Clavet, S., Beaudoin, P., and Poulin, P. 2005. Particle-based viscoelastic fluid simulation. In SCA ’05: Proceedings of the 2005 ACM SIGGRAPH/Eurographics symposium on Computer animation, ACM Press, New York, NY, USA, 219–228. Google ScholarDigital Library
    9. Cuesta, C., van Duijn, C., and Hulshof, J. 1999. Infiltration in porous media with dynamic capillary pressure: travelling waves. Tech. Rep. MAS-R9932, CWI, Nov.Google Scholar
    10. Darcy, H. 1856. Les Fontaines Publiques de la Ville de Dijon, Dalmont, Paris.Google Scholar
    11. Desbrun, M., and Cani, M.-P. 1999. Space-time adaptive simulation of highly deformable substances. Tech. Rep. 3829, INRIA, BP 105 – 78153 Le Chesnay Cedex – France, December.Google Scholar
    12. Desbrun, M., and Gascuel, M.-P. 1996. Smoothed particles: A new paradigm for animating highly deformable bodies. In Computer Animation and Simulation ’96, 61–76. Google ScholarDigital Library
    13. Foster, N., and Fedkiw, R. 2001. Practical animation of liquids. In SIGGRAPH ’01: Proceedings of the 28th annual conference on Computer graphics and interactive techniques, ACM, New York, NY, USA, 23–30. Google ScholarDigital Library
    14. Foster, N., and Metaxas, D. 1996. Realistic animation of liquids. Graph. Models Image Process. 58, 5, 471–483. Google ScholarDigital Library
    15. Foster, N., and Metaxas, D. 1997. Controlling fluid animation. In CGI ’97: Proceedings of the 1997 Conference on Computer Graphics International, IEEE Computer Society, Washington, DC, USA, 178. Google ScholarDigital Library
    16. Gingold, R. A., and Monaghan, J. J. 1977. Smoothed particle hydrodynamics: theory and application to non-spherical stars. Mon. Not. R. astr. Soc. 181, 375–389.Google Scholar
    17. Guendelman, E., Selle, A., Losasso, F., and Fedkiw, R. 2005. Coupling water and smoke to thin deformable and rigid shells. In SIGGRAPH ’05: ACM SIGGRAPH 2005 Papers, ACM Press, New York, NY, USA, 973–981. Google ScholarDigital Library
    18. Harada, T., Koshizuka, S., and Kawaguchi, Y. 2007. Smoothed particle hydrodynamics on GPUs. In Computer Graphics International, 63–70.Google Scholar
    19. Hegeman, K., Carr, N. A., and Miller, G. S. 2006. Particle-based fluid simulation on the GPU. In Computational Science — ICCS 2006, Springer, P. M. S. Vassil N. Alexandrov, Geert Dick van Albada and J. Dongarra, Eds., vol. 3994 of LNCS, 228–235. Google ScholarDigital Library
    20. Hilfer, R. 1996. Transport and relaxation phenomena in porous media. Advances in Chemical Physics XCII, 299.Google Scholar
    21. Hilfer, R. 2006. Macroscopic capillarity and hysteresis for flow in porous media. Physical Review E (Statistical, Nonlinear, and Soft Matter Physics) 73, 1, 016307.Google ScholarCross Ref
    22. Jensen, H. W., Legakis, J., and Dorsey, J. 1999. Rendering of wet materials. In Rendering Techniques, Proceedings of the Eurographics Workshop on Rendering, 273–282. Google ScholarCross Ref
    23. Keiser, R., Adams, B., Gasser, D., Bazzi, P., Dutré, P., and Gross, M. 2005. A unified Lagrangian approach to solid-fluid animation. In Proceedings of the Eurographics Symposium on Point-Based Graphics, 125–133. Google ScholarCross Ref
    24. Keiser, R., Adams, B., Dutré, P., Guibas, L. J., and Pauly, M. 2006. Multiresolution particle-based fluids. Tech. rep., ETH Zurich.Google Scholar
    25. Kipfer, P., and Westermann, R. 2006. Realistic and interactive simulation of rivers. In Proceedings Graphics Interface 2006, Canadian Human-Computer Communications Society, S. Mann and C. Gutwin, Eds., 41–48. Google ScholarDigital Library
    26. Kolb, A., and Cuntz, N. 2005. Dynamic particle coupling for GPU-based fluid simulation. In Proc. 18th Symposium on Simulation Technique, 722–727.Google Scholar
    27. Lekner, J., and Dorf, M. C. 1988. Why some things are darker when wet. Applied Optics 27, 7, 1278–1280.Google ScholarCross Ref
    28. Lorensen, W. E., and Cline, H. E. 1987. Marching cubes: A high resolution 3d surface construction algorithm. In SIGGRAPH 87: Proceedings of the 14th annual conference on Computer graphics and interactive techniques, ACM Press, New York, NY, USA, 163–169. Google ScholarDigital Library
    29. Lucy, L. B. 1977. A numerical approach to the testing of the fission hypothesis. Astronomical Journal 82 (Dec.), 1013–1024.Google ScholarCross Ref
    30. Monaghan, J. 1992. Smoothed particle hydrodynamics. Annual Revision on Astronomy and Astrophysics 30, 543–574.Google ScholarCross Ref
    31. Monaghan, J. J. 2005. Smoothed particle hydrodynamics. Reports on Progress in Physics 68, 8 (August), 1703–1759.Google ScholarCross Ref
    32. Morris, J. P., Fox, P. J., and Zhu, Y. 1997. Modeling low reynolds number incompressible flows using SPH. J. Comput. Phys. 136, 1, 214–226. Google ScholarDigital Library
    33. Morris, J. P., Zhu, Y., and Fox, P. J. 1999. Parallel simulations of pore-scale flow through porous media. Computers and Geotechnics 25, 4, 227–246.Google ScholarCross Ref
    34. Müller, M., Charypar, D., and Gross, M. 2003. Particle-based fluid simulation for interactive applications. In SCA ’03: Proceedings of the 2003 ACM SIGGRAPH/Eurographics symposium on Computer animation, Eurographics Association, Airela-Ville, Switzerland, Switzerland, 154–159. Google ScholarDigital Library
    35. Müller, M., Keiser, R., Nealen, A., Pauly, M., Gross, M., and Alexa, M. 2004. Point based animation of elastic, plastic and melting objects. Proceedings of 2004 ACM SIGGRAPH Symposium on Computer Animation, 141–151. Google ScholarDigital Library
    36. Müller, M., Schirm, S., Teschner, M., Heidelberger, B., and Gross, M. H. 2004. Interaction of fluids with deformable solids. Journal of Visualization and Computer Animation 15, 3–4, 159–171. Google ScholarCross Ref
    37. Müller, M., Solenthaler, B., Keiser, R., and Gross, M. 2005. Particle-based fluid-fluid interaction. In SCA ’05: Proceedings of the 2005 ACM SIGGRAPH/Eurographics symposium on Computer animation, ACM Press, New York, NY, USA, 237–244. Google ScholarDigital Library
    38. Nitao, J. J., and Bear, J. 1996. Potentials and their role in transport in porous media. Water Resources Research 32, 225–250.Google ScholarCross Ref
    39. Premoze, S., Tasdizen, T., Bigler, J., Lefohn, A., and Whitaker, R. T. 2003. Particle-based simulation of fluids. Eurographics 2003 / Computer Graphics Forum 22, 3, 401–410.Google Scholar
    40. Sawley, M., Cleary, P., and Ha, J. 1999. Modelling of flow in porous media and resin transfer moulding using smoothed particle hydrodynamics. In Second International Conference on CFD in the Minerals and Process Industries, 473–478.Google Scholar
    41. Scheidegger, A. E. 1957. The Physics of Flow through Porous Media. University of Toronto Press and Oxford University Press.Google Scholar
    42. Solenthaler, B., Schläfli, J., and Pajarola, R. 2007. A unified particle model for fluid-solid interactions. Computer Animation and Virtual Worlds 18, 1, 69–82. Google ScholarDigital Library
    43. Stam, J. 1999. Stable fluids. In SIGGRAPH ’99: Proceedings of the 26th annual conference on Computer graphics and interactive techniques, ACM Press/Addison-Wesley Publishing Co., New York, NY, USA, 121–128. Google ScholarDigital Library
    44. Twomey, S. A., Bohren, C. F., and Mergenthaler, J. L. 1986. Reflectance and albedo differences between wet and dry surfaces. Applied Optics 25 (feb), 431–437.Google Scholar
    45. Zhu, Y., and Fox, P. J. 2001. Smoothed particle hydrodynamics model for diffusion through porous media. Transport in Porous Media 43, 3 (June), 441–471.Google ScholarCross Ref
    46. Zhu, Y., and Fox, P. J. 2002. Simulation of pore-scale dispersion in periodic porous media using smoothed particle hydrodynamics. J. Comput. Phys. 182, 2, 622–645. Google ScholarDigital Library
    47. Zhu, Y., Fox, P. J., and Morris, J. 1999. A pore-scale numerical model for flow through porous media. International journal for numerical and analytical methods in geomechanics 23, 9, 881–904.Google Scholar

ACM Digital Library Publication:

Overview Page: