“Pocket reflectometry” by Ren, Wang, Snyder, Tong and Guo

  • ©Peiran Ren, Jiaping Wang, John M. Snyder, Xin Tong, and Baining Guo




    Pocket reflectometry



    We present a simple, fast solution for reflectance acquisition using tools that fit into a pocket. Our method captures video of a flat target surface from a fixed video camera lit by a hand-held, moving, linear light source. After processing, we obtain an SVBRDF.We introduce a BRDF chart, analogous to a color “checker” chart, which arranges a set of known-BRDF reference tiles over a small card. A sequence of light responses from the chart tiles as well as from points on the target is captured and matched to reconstruct the target’s appearance.We develop a new algorithm for BRDF reconstruction which works directly on these LDR responses, without knowing the light or camera position, or acquiring HDR lighting. It compensates for spatial variation caused by the local (finite distance) camera and light position by warping responses over time to align them to a specular reference. After alignment, we find an optimal linear combination of the Lambertian and purely specular reference responses to match each target point’s response. The same weights are then applied to the corresponding (known) reference BRDFs to reconstruct the target point’s BRDF. We extend the basic algorithm to also recover varying surface normals by adding two spherical caps for diffuse and specular references to the BRDF chart.We demonstrate convincing results obtained after less than 30 seconds of data capture, using commercial mobile phone cameras in a casual environment.


    1. Alldrin, N., Zickler, T. E., and Kriegman, D. 2008. Photometric stereo with non-parametric and spatially-varying reflectance. In Conf. on Comp. Vision and Pattern Recognition (CVPR), 1–8.Google Scholar
    2. An, X., and Pellacini, F. 2008. Appprop: all-pairs appearance-space edit propagation. ACM Transactions on Graphics 27, 40:1–40:9. Google ScholarDigital Library
    3. Ashikhmin, M., Premoze, S., and Shirley, P. 2000. A microfacet-based BRDF generator. In Siggraph 2000, Computer Graphics Proceedings, ACM Press/ACM SIGGRAPH/Addison Wesley Longman, 65–74. Google Scholar
    4. Chen, T., Goesele, M., and Seidel, H.-P. 2006. Mesostructure from specularity. In Proceedings of Computer Vision and Pattern Recognition (CVPR), CVPR ’06, 1825–1832. Google Scholar
    5. Cook, R. L., and Torrance, K. E. 1982. A reflectance model for computer graphics. ACM Trans. Graph. 1, 1, 7–24. Google ScholarDigital Library
    6. Dana, K. J., Nayar, S. K., van Ginneken, B., and Koenderink, J. J. 1999. Reflectance and texture of real-world surfaces. ACM Transactions on Graphics 18, 1, 1–34. Google ScholarDigital Library
    7. Dana, K. J. 2001. BRDF/BTF measurement device. In Proceedings of eighth IEEE international conference on computer vision (ICCV), vol. 2, 460–466.Google Scholar
    8. Debevec, P., Hawkins, T., Tchou, C., Duiker, H.-P., Sarokin, W., and Sagar, M. 2000. Acquiring the reflectance field of a human face. In Proc. SIGGRAPH 2000, 145–156. Google Scholar
    9. Dong, Y., Wang, J., Tong, X., Snyder, J., Lan, Y., BenEzra, M., and Guo, B. 2010. Manifold bootstrapping for SVBRDF capture. ACM Trans. Graph. 29, 4, 98:1–98:10. Google ScholarDigital Library
    10. Gardner, A., Tchou, C., Hawkins, T., and Debevec, P. 2003. Linear light source reflectometry. ACM Trans. Graph. 22, 3, 749–758. Google ScholarDigital Library
    11. Garg, G., Talvala, E.-V., Levoy, M., and Lensch, H. P. A. 2006. Symmetric photography: exploiting data-sparseness in reflectance fields. In Eurographics Workshop/Symposium on Rendering, Eurographics Association, Nicosia, Cyprus, 251–262. Google Scholar
    12. Ghosh, A., Achutha, S., Heidrich, W., and O’Toole, M. 2007. BRDF acquisition with basis illumination. Computer Vision, IEEE International Conference on, 1–8.Google Scholar
    13. Ghosh, A., Chen, T., Peers, P., Wilson, C. A., and Debevec, P. E. 2009. Estimating specular roughness and anisotropy from second order spherical gradient illumination. Computer Graphics Forum 28, 4, 1161–1170. Google ScholarDigital Library
    14. Ghosh, A., Chen, T., Peers, P., Wilson, C. A., and Debevec, P. 2010. Circularly polarized spherical illumination reflectometry. ACM Trans. Graph. 29 (December), 162:1–162:12. Google ScholarDigital Library
    15. Goldman, D. B., Curless, B., Hertzmann, A., and Seitz, S. M. 2005. Shape and spatially-varying BRDFs from photometric stereo. In International Conference on Computer Vision, I: 341–348. Google Scholar
    16. Han, J. Y., and Perlin, K. 2003. Measuring bidirectional texture reflectance with a kaleidoscope. ACM Trans. Graph. 22, 3, 741–748. Google ScholarDigital Library
    17. Hertzmann, A., and Seitz, S. M. 2003. Shape and materials by example: A photometric stereo approach. In IN PROC. IEEE CONF. COMPUTER VISION AND PATTERN RECOGNITION, 533–540. Google Scholar
    18. Holroyd, M., Lawrence, J., Humphreys, G., and Zickler, T. 2008. A photometric approach for estimating normals and tangents. ACM Transactions on Graphics 27, 5, 1–9. Google ScholarDigital Library
    19. Holroyd, M., Lawrence, J., and Zickler, T. 2010. A coaxial optical scanner for synchronous acquisition of 3d geometry and surface reflectance. ACM Trans. Graph. 29 (July), 99:1–99:12. Google ScholarDigital Library
    20. Lawrence, J., Ben-Artzi, A., DeCoro, C., Matusik, W., Pfister, H., Ramamoorthi, R., and Rusinkiewicz, S. 2006. Inverse shade trees for non-parametric material representation and editing. ACM Transactions on Graphics (Proc. SIGGRAPH) 25, 3 (July). Google ScholarDigital Library
    21. Lawson, C., and Hanson, R. 1974. Solving least squares problems. Prentice-Hall Chapter 23, 161.Google Scholar
    22. Lensch, H. P. A., Kautz, J., Goesele, M., Heidrich, W., and Seidel, H.-P. 2003. Image-based reconstruction of spatial appearance and geometric detail. ACM Transaction on Graphics 22, 2 (Apr.), 234–257. Google ScholarDigital Library
    23. Lu, R., Koenderink, J. J., and Kappers, A. M. L. 1998. Optical properties (bidirectional reflectance distribution functions) of velvet. Applied Optics 37, 25 (Sept.), 5974–5984.Google ScholarCross Ref
    24. Ma, W.-C., Hawkins, T., Peers, P., Chabert, C. F., Weiss, M., and Debevec, P. 2007. Rapid acquisition of specular and diffuse normal maps from polarized spherical gradient illumination. Rendering Techniques, 183–194. Google Scholar
    25. Marschner, S., Westin, S., Lafortune, E., Torrance, K., and Greenberg, D. 1999. Image-based BRDF measurement including human skin. In 10th Eurographics Rendering Workshop. Google Scholar
    26. Matusik, W., Pfister, H., Brand, M., and McMillan, L. 2003. Efficient isotropic BRDF measurement. In EGRW ’03: Proceedings of the 14th Eurographics workshop on Rendering, Eurographics Association, Aire-la-Ville, Switzerland, Switzerland, 241–247. Google Scholar
    27. Matusik, W., Ajdin, B., Gu, J., Lawrence, J., Lensch, H. P., Pellacini, F., and Rusinkiewicz, S. 2009. Printing spatially-varying reflectance. ACM Trans. Graphics (Proc. SIGGRAPH Asia) 28, 5 (Dec.). Google ScholarDigital Library
    28. McAllister, D. K., Lastra, A. A., and Heidrich, W. 2002. Efficient rendering of spatial bi-directional reflectance distribution functions. In Proceedings of the 17th Eurographics/SIGGRAPH workshop on graphics hardware (EGGH-02), ACM Press, New York, S. N. Spencer, Ed., 79–88. Google ScholarDigital Library
    29. Moshe, B.-E., Wang, J., Bennett, W., Li, X., and Ma, L. 2008. An LED-only BRDF measurement device. In Computer Vision and Pattern Recognition, 2008. CVPR 2008. IEEE Conference on, 1–8.Google Scholar
    30. Mukaigawa, Y., sumino, K., and yagi, Y. 2007. High-speed measurement of BRDF using an ellipsoidal mirror and a projector. In Computer Vision and Pattern Recognition, 2007. CVPR ’07. IEEE Conference on, 1–8.Google Scholar
    31. Muller, G., Meseth, J., Sattler, M., Sarlette, R., and Klein, R. 2005. Acquisition, synthesis, and rendering of bidirectional texture functions. Computer Graphics Forum 24, 1, 83–109.Google ScholarCross Ref
    32. Murrsy-Coleman, J. F., A. S. 1990. The automated measurement of BRDFs and their application to luminaire modeling. Journal of the Illuminating Engineering Sociery, Winter.Google Scholar
    33. Ngan, A., Durand, F., and Matusik, W. 2005. Experimental analysis of BRDF models. Eurographics Symposium on Rendering 2005. Google Scholar
    34. Ramamoorthi, R., and Hanrahan, P. 2001. A signal-processing framework for inverse rendering. In Proceedings of the 28th annual conference on Computer graphics and interactive techniques, ACM, New York, NY, USA, SIGGRAPH ’01, 117–128. Google Scholar
    35. Romeiro, F., and Zickler, T. 2010. Blind reflectometry. In Proceedings of the 11th European conference on Computer vision: Part I, Springer-Verlag, Berlin, Heidelberg, ECCV’10, 45–58. Google ScholarDigital Library
    36. Romeiro, F., Vasilyev, Y., and Zickler, T. 2008. Passive reflectometry. In Proceedings of the 10th European Conference on Computer Vision: Part IV, Springer-Verlag, Berlin, Heidelberg, 859–872. Google Scholar
    37. Sakoe, H., and Chiba, S. 1978. Dynamic programming algorithm optimization for spoken word recognition. IEEE Transactions on Acoustics, Speech, and Signal Processing 26, 43–49.Google ScholarCross Ref
    38. Treuille, A., Hertzmann, A., and Seitz, S. M. 2004. Example-based stereo with general BRDFs. In European Conference on Computer Vision, 457–469.Google Scholar
    39. Wang, J., Zhao, S., Tong, X., Snyder, J., and Guo, B. 2008. Modeling anisotropic surface reflectance with example-based microfacet synthesis. In SIGGRAPH ’08: ACM SIGGRAPH 2008 papers, ACM, New York, NY, USA, 1–9. Google Scholar
    40. Wang, J., Ren, P., Gong, M., Snyder, J., and Guo, B. 2009. All-frequency rendering of dynamic, spatially-varying reflectance. ACM Transactions on Graphics 28, 5, 133:1–133:10. Google ScholarDigital Library
    41. Ward, G. J. 1992. Measuring and modeling anisotropic reflection. In SIGGRAPH ’92: Proceedings of the 19th annual conference on Computer graphics and interactive techniques, ACM Press, New York, NY, USA, 265–272. Google Scholar
    42. Weyrich, T. 2006. Acquisition of human faces using a measurement-based skin reflectance model. In PhD thesis, Department of Computer Science, ETH Zrich, vol. 16741.Google Scholar
    43. Xu, K., Jia, Y.-T., Fu, H., Hu, S.-M., and Tai, C.-L. 2008. Spherical piecewise constant basis functions for all-frequency precomputed radiance transfer. IEEE Transactions on Visualization and Computer Graphics 14, 2, 454–467. Google ScholarDigital Library
    44. Xu, K., Li, Y., Ju, T., Hu, S.-M., and Liu, T.-Q. 2009. Efficient affinity-based edit propagation using k-d tree. ACM Transactions on Graphics 28, 5, 118:1–118:6. Google ScholarDigital Library
    45. Zhang, Z. 2000. A flexible new technique for camera calibration. In Pattern Analysis and Machine Intelligence, IEEE Transactions on, vol. 22, 1330–1334. Google ScholarDigital Library
    46. Zickler, T., Enrique, S., Ramamoorthi, R., and Belhumeur, P. 2005. Reflectance sharing: image-based rendering from a sparse set of images. In Eurographics Symposium on Rendering, Eurographics Association, Konstanz, Germany, K. Bala and P. Dutré, Eds., 253–264. Google Scholar

ACM Digital Library Publication:

Overview Page: