“Physical validation of simulators in computer graphics: a new framework dedicated to slender elastic structures and frictional contact” by Romero, Ly, Rasheed, Charrondière, Lazarus, et al. …

  • ©

Conference:


Type(s):


Title:

    Physical validation of simulators in computer graphics: a new framework dedicated to slender elastic structures and frictional contact

Presenter(s)/Author(s):



Abstract:


    We introduce a selected set of protocols inspired from the Soft Matter Physics community in order to validate Computer Graphics simulators of slender elastic structures possibly subject to dry frictional contact. Although these simulators were primarily intended for feature film animation and visual effects, they are more and more used as virtual design tools for predicting the shape and deformation of real objects; hence the need for a careful, quantitative validation. Our tests, experimentally verified, are designed to evaluate carefully the predictability of these simulators on various aspects, such as bending elasticity, bend-twist coupling, and frictional contact. We have passed a number of popular codes of Computer Graphics through our benchmarks by defining a rigorous, consistent, and as fair as possible methodology. Our results show that while some popular simulators for plates/shells and frictional contact fail even on the simplest scenarios, more recent ones, as well as well-known codes for rods, generally perform well and sometimes even better than some reference commercial tools of Mechanical Engineering. To make our validation protocols easily applicable to any simulator, we provide an extensive description of our methodology, and we shall distribute all the necessary model data to be compared against.

References:


    1. D. Arnold and F. Brezzi. 1997. Locking free finite element for shells. Math. Comput. 66 (Jan. 1997), 1–14. Google ScholarDigital Library
    2. U. Ascher, R. Mattheij, and R. Russell. 1995. Numerical Solution of Boundary Value Problems for Ordinary Differential Equations. SIAM.Google Scholar
    3. B. Audoly and Y. Pomeau. 2010. Elasticity and Geometry: From Hair Curls to the Nonlinear Response of Shells. Oxford University Press.Google Scholar
    4. D. Baraff and A. Witkin. 1998. Large Steps in Cloth Simulation. In Computer Graphics Proceedings. 43–54. http://www.cs.cmu.edu/~baraff/papers/sig98.pdfGoogle Scholar
    5. D. Baraff, A. Witkin, and M. Kass. 2003. Untangling Cloth. ACM Transactions on Graphics 22, 3 (2003), 862–870.Google ScholarDigital Library
    6. A. Bartle, A. Sheffer, V. Kim, D. Kaufman, N. Vining, and F. Berthouzoz. 2016. Physics-driven Pattern Adjustment for Direct 3D Garment Editing. ACM Trans. Graph. 35, 4, Article 50 (July 2016), 11 pages.Google ScholarDigital Library
    7. M. Bergou, B. Audoly, E. Vouga, M. Wardetzky, and E. Grinspun. 2010. Discrete Viscous Threads. ACM Transactions on Graphics (Proc. ACM SIGGRAPH’10) 29, 4 (2010). http://www.cs.columbia.edu/cg/threadsGoogle Scholar
    8. M. Bergou, M. Wardetzky, S. Robinson, B. Audoly, and E. Grinspun. 2008. Discrete elastic rods. ACM Transactions on Graphics (Proc. ACM SIGGRAPH’08) 27, 3 (2008), 1–12. Google ScholarDigital Library
    9. F. Bertails, B. Audoly, M.-P. Cani, B. Querleux, F. Leroy, and J.-L. Lévêque. 2006. Super-Helices for Predicting the Dynamics of Natural Hair. ACM Transactions on Graphics (Proc. ACM SIGGRAPH’06) 25 (2006), 1180–1187. Issue 3. Google ScholarDigital Library
    10. B. Bickel, M. Bächer, M. Otaduy, H. Richard Lee, H. Pfister, M. Gross, and W. Matusik. 2010. Design and Fabrication of Materials with Desired Deformation Behavior. ACM Trans. Graph. 29, 4, Article 63 (July 2010), 10 pages. Google ScholarDigital Library
    11. B. Bickel, M. Bächer, M. Otaduy, W. Matusik, H. Pfister, and M. Gross. 2009. Capture and Modeling of Non-Linear Heterogeneous Soft Tissue. ACM Trans. Graph. 28, 3, Article 89 (July 2009), 9 pages. Google ScholarDigital Library
    12. W.G. Bickley. 1934. The heavy elastica. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science 17, 113 (1934), 603–622. Google ScholarCross Ref
    13. S. Bouaziz, S. Martin, T. Liu, L. Kavan, and M. Pauly. 2014. Projective Dynamics: Fusing Constraint Projections for Fast Simulation. ACM Trans. Graph. 33, 4, Article 154 (July 2014), 11 pages.Google ScholarDigital Library
    14. F. Boyer, V. Lebastard, F. Candelier, and F. Renda. 2020. Dynamics of Continuum and Soft Robots: A Strain Parameterization Based Approach. IEEE Transactions on Robotics (2020), 1–17. Google ScholarCross Ref
    15. R. Bridson, R. Fedkiw, and R. Anderson. 2002. Robust treatment of collisions, contact and friction for cloth animation. ACM Trans. Graph. 21, 3 (2002), 594–603. http://www.cs.ubc.ca/~rbridson/docs/cloth2002.pdfGoogle ScholarDigital Library
    16. R. Bridson, S. Marino, and R. Fedkiw. 2003. Simulation of Clothing with Folds and Wrinkles. In Proceedings of the 2003 ACM SIGGRAPH/Eurographics Symposium on Computer Animation (SCA ’03). 28–36. http://dl.acm.org/citation.cfm?id=846276.846281Google ScholarDigital Library
    17. M. Brunetti, J. S. Hale, and C. Maurini. 2018. Fenics-Shells demos. https://fenics-shells.readthedocs.io/en/latest/demo/nonlinear-naghdi-cylindrical/demo_nonlinear-naghdi-cylindrical.py.htmlGoogle Scholar
    18. E. Buckingham. 1914. On physically similar systems; illustrations of the use of dimensional equations. Physical Review 4, 4 (1914), 345–376.Google ScholarCross Ref
    19. R. Casati and F. Bertails-Descoubes. 2013. Super Space Clothoids. ACM Transactions on Graphics (Proc. ACM SIGGRAPH’13) 32, 4, Article 48 (July 2013), 12 pages. http://www.inrialpes.fr/bipop/people/casati/research.html#ssc. Google ScholarDigital Library
    20. R. Charrondière, F. Bertails-Descoubes, S. Neukirch, and V. Romero. 2020. Numerical modeling of inextensible elastic ribbons with curvature-based elements. Computer Methods in Applied Mechanics and Engineering 364 (2020), 112922. Google ScholarCross Ref
    21. H.-Y. Chen, A. Sastry, W. van Rees, and E. Vouga. 2018. Physical Simulation of Environmentally Induced Thin Shell Deformation. ACM Trans. Graph. 37, 4, Article 146 (July 2018), 13 pages. Google ScholarDigital Library
    22. D. Clyde, J. Teran, and R. Tamstorf. 2017. Modeling and Data-Driven Parameter Estimation for Woven Fabrics. In Proceedings of the ACM SIGGRAPH / Eurographics Symposium on Computer Animation (SCA ’17). Association for Computing Machinery, New York, NY, USA, Article 17, 11 pages. Google ScholarDigital Library
    23. E. Coevoet, A. Escande, and C. Duriez. 2019. Soft robots locomotion and manipulation control using FEM simulation and quadratic programming. In RoboSoft 2019 – IEEE International Conference on Soft Robotics. Seoul, South Korea. https://hal.inria.fr/hal-02079151Google Scholar
    24. S. Coros, S. Martin, B. Thomaszewski, C. Schumacher, R. Sumner, and M. Gross. 2012. Deformable Objects Alive! ACM Trans. Graph. 31, 4, Article 69 (July 2012), 9 pages. Google ScholarDigital Library
    25. M. A. Crisfield and G. Jelenić. 1998. Objectivity of strain measures in the geometrically exact three-dimensional beam theory and its finite-element implementation. Proc. Royal Society of London, Series A 455, 1983 (1998), 1125–1147.Google Scholar
    26. Dassault-Systems. 2005. Simulia Abaqus. https://www.3ds.com/products-services/simulia/products/abaqusGoogle Scholar
    27. G. Daviet. 2020. Simple and Scalable Frictional Contacts for Thin Nodal Objects. ACM Trans. Graph. 39, 4, Article 61 (July 2020), 16 pages. Google ScholarDigital Library
    28. G. Daviet, F. Bertails-Descoubes, and L. Boissieux. 2011. A Hybrid Iterative Solver for Robustly Capturing Coulomb Friction in Hair Dynamics. ACM Trans. Graph. 30, 6 (Dec. 2011), 1–12.Google ScholarDigital Library
    29. A. Derouet-Jourdan, F. Bertails-Descoubes, G. Daviet, and J. Thollot. 2013. Inverse Dynamic Hair Modeling with Frictional Contact. ACM Trans. Graph. 32, 6, Article 159 (Nov. 2013), 10 pages. Google ScholarDigital Library
    30. M. Dias and B. Audoly. 2015. “Wunderlich, Meet Kirchhoff”: A General and Unified Description of Elastic Ribbons and Thin Rods. Journal of Elasticity 119, 1 (Apr 2015), 49–66. Google ScholarCross Ref
    31. E. Doedel, H. Keller, and J.-P. Kernevez. 1991. Numerical Analysis and Control of Bifurcation Problems (I) Bifurcation in Finite Dimensions. International Journal of Bifurcation and Chaos 1, 3 (1991), 493–520.Google ScholarCross Ref
    32. V. Duclaux. 2006. Pulmonary occlusions, eyelid entropion and aneurysm : a physical insight in physiology. Ph.D. Dissertation. Université de Provence – Aix-Marseille I. https://tel.archives-ouvertes.fr/tel-00130610Google Scholar
    33. A. Fargette. 2017. Soft Interfaces: from elastocapillary snap-through to droplet dynamics on elastomers. Ph.D. Dissertation. Université Pierre et Marie Curie – Paris VI.Google Scholar
    34. R. Fosdick and E. Fried (Eds.). 2015. The Mechanics of Ribbons and Moebius Bands. Springer.Google Scholar
    35. K. Gavriil, R. Guseinov, J. Pérez, D. Pellis, P. Henderson, F. Rist, H. Pottmann, and B. Bickel. 2020. Computational Design of Cold Bent Glass Façades. ACM Transactions on Graphics (SIGGRAPH Asia 2020) 39, 6, Article 208 (Dec 2020), 16 pages.Google Scholar
    36. J. M. Gere. 2004. Mechancis of Materials (6th ed.). Thomson-Brooks/Cole.Google Scholar
    37. A. Goriely. 2006. Twisted Elastic Rings and the Rediscoveries of Michell’s Instability. Journal of Elasticity 84 (September 2006), 281–299. Google ScholarCross Ref
    38. E. Grinspun, Y. Gingold, J. Reisman, and D. Zorin. 2006. Computing discrete shape operators on general meshes. Computer Graphics Forum 25, 3 (2006), 547–556. Google ScholarCross Ref
    39. E. Grinspun, A. Hirani, M. Desbrun, and P. Schröder. 2003. Discrete Shells. In ACM SIGGRAPH – EG Symposium on Computer Animation (SCA’03). ACM-EG SCA, 62–67. http://www.multires.caltech.edu/pubs/ds.pdfGoogle ScholarDigital Library
    40. R. Guseinov, C. McMahan, J. Pérez, C. Daraio, and B. Bickel. 2020. Programming temporal morphing of self-actuated shells. Nature Communications 11 (Jan. 2020). Google ScholarCross Ref
    41. M. Habera, J. S. Hale, A. Logg, C. Richardson, J. Ring, M. E. Rognes, N. Sime, and G. N. Wells. 2018. The Fenics Project. https://fenicsproject.orgGoogle Scholar
    42. S. Hadap. 2006. Oriented Strands – Dynamics of Stiff Multi-Body System. In ACM SIGGRAPH / Eurographics Symposium on Computer Animation. Google ScholarCross Ref
    43. J. S. Hale, M. Brunetti, S. Bordas, and C. Maurini. 2018. Simple and extensible plate and shell finite element models through automatic code generation tools. Computers & Structures 209 (2018), 163–181.Google ScholarCross Ref
    44. D. Harmon, E. Vouga, B. Smith, R. Tamstorf, and E. Grinspun. 2009. Asynchronous Contact Mechanics. ACM Trans. Graph. 28, 3, Article 87 (July 2009), 12 pages. Google ScholarDigital Library
    45. D. Harmon, E. Vouga, R. Tamstorf, and E. Grinspun. 2008. Robust Treatment of Simultaneous Collisions. ACM Trans. Graph. 27, 3, Article 23 (Aug. 2008), 4 pages. Google ScholarDigital Library
    46. D. Hinz and E. Fried. 2015. Translation of Michael Sadowsky’s Paper ‘An Elementary Proof for the Existence of a Developable Möbius Band and the Attribution of the Geometric Problem to a Variational Problem’. Journal of Elasticity 119, 1 (2015), 3–6.Google ScholarCross Ref
    47. L. Hu, D. Bradley, H. Li, and T. Beeler. 2017. Simulation-Ready Hair Capture. Computer Graphics Forum (2017). Google ScholarCross Ref
    48. M. Jawed, F. Da, J. Joo, E. Grinspun, and P. Reis. 2014. Coiling of elastic rods on rigid substrates. Proceedings of the National Academy of Sciences 111, 41 (2014), 14663–14668. http://www.cs.columbia.edu/cg/elastic_coiling. Google ScholarCross Ref
    49. D. Kaufman, R. Tamstorf, B. Smith, J.-M. Aubry, and E. Grinspun. 2014. Adaptive Nonlinearity for Collisions in Complex Rod Assemblies. ACM Trans. Graph. 33, 4, Article 123 (July 2014), 12 pages.Google ScholarDigital Library
    50. S. Kawabata and Masako Niwa. 1989. Fabric Performance in Clothing and Clothing Manufacture. The Journal of The Textile Institute 80, 1 (1989), 19–50. Google ScholarCross Ref
    51. K. Krieger. 2012. Extreme mechanics: buckling down. Nature 488, 7410 (Aug. 2012), 146–147.Google ScholarCross Ref
    52. F. Laccone, L. Malomo, J. Pérez, N. Pietroni, F. Ponchio, B. Bickel, and P. Cignoni. 2019. FlexMaps Pavilion: a twisted arc made of mesostructured flat flexible panels. In FORM and FORCE, IASS Symposium 2019, Structural Membranes 2019. CIMNE, 498–504. http://vcg.isti.cnr.it/Publications/2019/LMPPPBC19Google Scholar
    53. L. D. Landau and E. M. Lifshitz. 1959. Theory of elasticity. Pergamon London.Google Scholar
    54. J. Li, G. Daviet, R. Narain, F. Bertails-Descoubes, M. Overby, G. Brown, and L. Boissieux. 2018. An Implicit Frictional Contact Solver for Adaptive Cloth Simulation. ACM Trans. Graph. 37, 4, Article 52 (Aug. 2018), 15 pages.Google ScholarDigital Library
    55. M. Li, D. Kaufman, and C. Jiang. 2020. Codimensional Incremental Potential Contact. https://arxiv.org/pdf/2012.04457.pdfGoogle Scholar
    56. J. Liang, M.C. Lin, and V. Koltun. 2019. Differentiable Cloth Simulation for Inverse Problems. In Conference on Neural Information Processing Systems.Google Scholar
    57. M. Ly, J. Jouve, L. Boissieux, and F. Bertails-Descoubes. 2020. Projective Dynamics with Dry Frictional Contact. ACM Transactions on Graphics 39, 4 (2020), 1–8. Google ScholarDigital Library
    58. S. Martin, P. Kaufmann, Mario Botsch, E. Grinspun, and M. Gross. 2010. Unified Simulation of Elastic Rods, Shells, and Solids. ACM Trans. Graph. 29, 4, Article 39 (July 2010), 10 pages. Google ScholarDigital Library
    59. J. Martínez, M. Skouras, C. Schumacher, S. Hornus, S. Lefebvre, and B. Thomaszewski. 2019. Star-Shaped Metrics for Mechanical Metamaterial Design. ACM Transactions on Graphics 38, 4 (July 2019), Article No. 82:1–13. Google ScholarDigital Library
    60. A. McAdams, A. Selle, K. Ward, E. Sifakis, and J. Teran. 2009. Detail preserving continuum simulation of straight hair. ACM Transactions on Graphics (Proc. ACM SIGGRAPH’09) 28, 3 (2009), 1–6. Google ScholarDigital Library
    61. A. G. M. Michell. 1899. Elastic stability of long beams under transverse forces. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science 48, 292 (1899), 298–309.Google ScholarCross Ref
    62. E. Miguel, D. Bradley, B. Thomaszewski, B. Bickel, W. Matusik, M. Otaduy, and S. Marschner. 2012. Data-Driven Estimation of Cloth Simulation Models. Computer Graphics Forum 31, 2 (may 2012). Google ScholarDigital Library
    63. Y Mikata. 2006. Complete solution of elastica for a clamped-hinged beam, and its applications to a carbon nanotube. Acta mechanica 190, 1-4 (Oct. 2006), 133–150.Google Scholar
    64. J. Miller, A. Lazarus, B. Audoly, and P. Reis. 2014. Shapes of a Suspended Curly Hair. Physical Review Letters 112, 6 (2014).Google ScholarCross Ref
    65. K. Museth. 2020. Physics simulations: Is it Hollywood magic or rocket science. http://computeranimation.org/2020/program.html#keynote1Google Scholar
    66. R. Narain, T. Pfaff, and J. O’Brien. 2013. Folding and Crumpling Adaptive Sheets. ACM Trans. Graph. 32, 4 (2013), 51.Google ScholarDigital Library
    67. R. Narain, A. Samii, and J. O’Brien. 2012. Adaptive Anisotropic Remeshing for Cloth Simulation. ACM Trans. Graph. 31, 6, Article 152 (Nov. 2012), 10 pages.Google ScholarDigital Library
    68. D. K. Pai. 2002. STRANDS: Interactive Simulation of Thin Solids using Cosserat Models. Computer Graphics Forum 21, 3 (2002), 347–352. Google ScholarCross Ref
    69. J. Panetta, M. Konaković-Luković, F. Isvoranu, E. Bouleau, and M. Pauly. 2019. X-Shells: A New Class of Deployable Beam Structures. ACM Trans. Graph. 38, 4, Article 83 (July 2019), 15 pages. Google ScholarDigital Library
    70. H. Pham. 1999. Software reliability. Springer.Google Scholar
    71. A.-H. Rasheed, V. Romero, F. Bertails-Descoubes, S. Wuhrer, J.-S. Franco, and A. Lazarus. 2020. Learning to Measure the Static Friction Coefficient in Cloth Contact. In CVPR 2020 – IEEE Conference on Computer Vision and Pattern Recognition. Seattle, United States, 1–10. https://hal.inria.fr/hal-02511646Google Scholar
    72. P. M. Reis. 2015. A Perspective on the Revival of Structural (In) Stability With Novel Opportunities for Function: From Buckliphobia to Buckliphilia. Journal of Applied Mechanics 82, 11 (Sept. 2015). Google ScholarCross Ref
    73. E. Reissner. 1995. The problem of lateral buckling of cantilever plates. ZAMM – Journal of Applied Mathematics and Mechanics 8 (1995), 615–621.Google ScholarCross Ref
    74. B. Roman and A Pocheau. 2002. Postbuckling of bilaterally constrained rectangular thin plates. Journal of the Mechanics and Physics of Solids 50, 1 (2002), 2379–2401.Google ScholarCross Ref
    75. M. Sadowsky. 1929. Die Differentialgleichungen des MÖBIUSschen Bandes. Jahresbericht der Deutschen Mathematiker-Vereinigung (1929), 49–51., translated in [Hinz and Fried 2015].Google Scholar
    76. T. Sano, T. Yamaguchi, and H. Wada. 2017. Slip Morphology of Elastic Strips on Frictional Rigid Substrates. Physical Review Letters 118, 17 (2017), 178001–5.Google ScholarCross Ref
    77. C. Schumacher, S. Marschner, M. Gross, and B. Thomaszewski. 2018. Mechanical Characterization of Structured Sheet Materials. ACM Trans. Graph. 37, 4, Article 148 (July 2018), 15 pages. Google ScholarDigital Library
    78. R. T. Shield. 1992. Bending of a beam or wide strip. Quarterly Journal of Mechanics and Applied Mathematics 45, 4 (1992), 567–573.Google ScholarCross Ref
    79. M. Skouras, B. Thomaszewski, B. Bickel, and M. Gross. 2012. Computational Design of Rubber Balloons. Comput. Graphics Forum (Proc. Eurographics) (2012).Google Scholar
    80. M. Skouras, B. Thomaszewski, P. Kaufmann, A. Garg, B. Bickel, E. Grinspun, and M. Gross. 2014. Designing Inflatable Structures. ACM Trans. Graph. 33, 4, Article 63 (July 2014), 10 pages. Google ScholarDigital Library
    81. B. Smith, D. Kaufman, E. Vouga, R. Tamstorf, and E. Grinspun. 2012. Reflections on Simultaneous Impact. ACM Trans. Graph. 31, 4, Article 106 (July 2012), 12 pages. Google ScholarDigital Library
    82. J. Spillmann and M. Teschner. 2007. CoRdE: Cosserat rod elements for the dynamic simulation of one-dimensional elastic objects. In ACM SIGGRAPH – EG Symposium on Computer Animation (SCA’07). ACM-EG SCA, 63–72.Google ScholarDigital Library
    83. K Sze, X. Liu, and S. Lo. 2004. Popular benchmark problems for geometric nonlinear analysis of shells. Finite Elements in Analysis and Design 40, 11 (2004), 1551 — 1569. Google ScholarDigital Library
    84. S. Timoshenko. 1953. History of strength of materials. The McGraw-Hill Book Company, Inc.Google Scholar
    85. F. Vanneste, O. Goury, J. Martinez, S. Lefebvre, H. Delingette, and C. Duriez. 2020. Anisotropic soft robots based on 3D printed meso-structured materials: design, modeling by homogenization and simulation. IEEE Robotics and Automation Letters 5, 2 (Jan. 2020), 2380–2386. Google ScholarCross Ref
    86. L. Virgin. 2007. Vibration of axially loaded structures. Cambridge University Press.Google Scholar
    87. H. Wang. 2018. Rule-Free Sewing Pattern Adjustment with Precision and Efficiency. ACM Trans. Graph. 37, 4, Article 53 (July 2018), 13 pages.Google ScholarDigital Library
    88. H. Wang, R. Ramamoorthi, and J. O’Brien. 2011. Data-driven elastic models for cloth: modeling and measurement. ACM Trans. Graph. 30, 4, Article 71 (Aug. 2011), 12 pages.Google ScholarDigital Library
    89. C. Weischedel. 2012. A discrete geometric view on shear-deformable shell models.Google Scholar
    90. W. Wunderlich. 1962. Über ein abwickelbares Möbiusband. Monatshefte für Mathematik 66, 3 (June 1962), 276–289. Google ScholarCross Ref
    91. S. Yang, J. Liang, and M. C. Lin. 2017. Learning-based cloth material recovery from video. In Proceedings of the IEEE International Conference on Computer Vision. 4383–4393.Google Scholar
    92. S. Yang and M.C. Lin. 2016. MaterialCloning: Acquiring elasticity parameters from images for medical applications. IEEE Transactions on Visualization and Computer Graphics 22, 9 (2016), 2122–2135.Google ScholarDigital Library


ACM Digital Library Publication:



Overview Page: