“PhotoMat: A Material Generator Learned from Single Flash Photos” by Hasan, Deschaintre, Guerrero, Hold-Geoffroy, Sunkavalli, et al. …

  • ©Milos Hasan, Valentin Deschaintre, Paul Guerrero, Yannick Hold-Geoffroy, Kalyan Sunkavalli, and Nima Khademi Kalantari

Conference:


Type(s):


Title:

    PhotoMat: A Material Generator Learned from Single Flash Photos

Session/Category Title:   Neural Capturing


Presenter(s)/Author(s):


Moderator(s):



Abstract:


    Authoring high-quality digital materials is key to realism in 3D rendering. Previous generative models for materials have been trained exclusively on synthetic data; such data is limited in availability and has a visual gap to real materials. We circumvent this limitation by proposing PhotoMat: the first material generator trained exclusively on real photos of material samples captured using a cell phone camera with flash. Supervision on individual material maps is not available in this setting. Instead, we train a generator for a neural material representation that is rendered with a learned relighting module to create arbitrarily lit RGB images; these are compared against real photos using a discriminator. We train PhotoMat with a new dataset of 12,000 material photos captured with handheld phone cameras under flash lighting. We demonstrate that our generated materials have better visual quality than previous material generators trained on synthetic data. Moreover, we can fit analytical material models to closely match these generated neural materials, thus allowing for further editing and use in 3D rendering.

References:


    1. Adobe. 2023. Substance 3D Designer.
    2. Eric R. Chan, Connor Z. Lin, Matthew A. Chan, Koki Nagano, Boxiao Pan, Shalini De Mello, Orazio Gallo, Leonidas Guibas, Jonathan Tremblay, Sameh Khamis, Tero Karras, and Gordon Wetzstein. 2021. Efficient Geometry-aware 3D Generative Adversarial Networks. In arXiv.
    3. Valentin Deschaintre, Miika Aittala, Fredo Durand, George Drettakis, and Adrien Bousseau. 2018. Single-image SVBRDF Capture with a Rendering-aware Deep Network. ACM Trans. Graph. 37, 4 (2018), 128:1–128:15.
    4. Valentin Deschaintre, Miika Aittala, Frédo Durand, George Drettakis, and Adrien Bousseau. 2019. Flexible SVBRDF Capture with a Multi-Image Deep Network. Computer Graphics Forum 38, 4 (2019).
    5. Valentin Deschaintre, George Drettakis, and Adrien Bousseau. 2020. Guided Fine-Tuning for Large-Scale Material Transfer. Computer Graphics Forum (Proceedings of the Eurographics Symposium on Rendering) 39, 4 (2020). http://www-sop.inria.fr/reves/Basilic/2020/DDB20
    6. Jiahui Fan, Beibei Wang, Milos Hasan, Jian Yang, and Ling-Qi Yan. 2022. Neural Layered BRDFs(SIGGRAPH ’22). Article 4, 8 pages.
    7. Duan Gao, Xiao Li, Yue Dong, Pieter Peers, Kun Xu, and Xin Tong. 2019. Deep inverse rendering for high-resolution SVBRDF estimation from an arbitrary number of images. ACM Trans. Graph. 38, 4 (2019).
    8. Leon A. Gatys, Alexander S. Ecker, and Matthias Bethge. 2015. A Neural Algorithm of Artistic Style. arXiv:1508.06576
    9. Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair, Aaron Courville, and Yoshua Bengio. 2014. Generative Adversarial Nets. In Advances in Neural Information Processing Systems 27. 2672–2680.
    10. Dar’ya Guarnera, Giuseppe Claudio Guarnera, Abhijeet Ghosh, Cornelia Denk, and Mashhuda Glencross. 2016. BRDF Representation and Acquisition. Computer Graphics Forum (2016).
    11. Paul Guerrero, Milos Hasan, Kalyan Sunkavalli, Radomir Mech, Tamy Boubekeur, and Niloy Mitra. 2022. MatFormer: A Generative Model for Procedural Materials. ACM Trans. Graph. 41, 4, Article 46 (2022). https://doi.org/10.1145/3528223.3530173
    12. Jie Guo, Shuichang Lai, Chengzhi Tao, Yuelong Cai, Lei Wang, Yanwen Guo, and Ling-Qi Yan. 2021. Highlight-Aware Two-Stream Network for Single-Image SVBRDF Acquisition. ACM Trans. Graph. 40, 4, Article 123 (jul 2021), 14 pages. https://doi.org/10.1145/3450626.3459854
    13. Yu Guo, Cameron Smith, Miloš Hašan, Kalyan Sunkavalli, and Shuang Zhao. 2020. MaterialGAN: Reflectance Capture using a Generative SVBRDF Model. ACM Trans. Graph. 39, 6 (2020), 254:1–254:13.
    14. Philipp Henzler, Valentin Deschaintre, Niloy J. Mitra, and Tobias Ritschel. 2021. Generative Modelling of BRDF Textures from Flash Images. ACM Trans. Graph. 40, 6, Article 284 (dec 2021), 13 pages.
    15. Martin Heusel, Hubert Ramsauer, Thomas Unterthiner, Bernhard Nessler, and Sepp Hochreiter. 2017. Gans trained by a two time-scale update rule converge to a local nash equilibrium. Advances in neural information processing systems 30 (2017).
    16. Yiwei Hu, Miloš Hašan, Paul Guerrero, Holly Rushmeier, and Valentin Deschaintre. 2022. Controlling Material Appearance by Examples. Computer Graphics Forum (2022). https://doi.org/10.1111/cgf.14591
    17. Tero Karras, Samuli Laine, Miika Aittala, Janne Hellsten, Jaakko Lehtinen, and Timo Aila. 2019. Analyzing and Improving the Image Quality of StyleGAN. arXiv:1912.04958
    18. Diederik P Kingma and Jimmy Ba. 2014. Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014).
    19. Alexandr Kuznetsov, Krishna Mullia, Zexiang Xu, Miloš Hašan, and Ravi Ramamoorthi. 2021. NeuMIP: multi-resolution neural materials. ACM Transactions on Graphics (TOG) 40, 4 (2021), 1–13.
    20. Xiao Li, Yue Dong, Pieter Peers, and Xin Tong. 2017. Modeling Surface Appearance from a Single Photograph Using Self-Augmented Convolutional Neural Networks. ACM Trans. Graph. 36, 4 (2017), 45:1–45:11.
    21. Zhengqin Li, Kalyan Sunkavalli, and Manmohan Chandraker. 2018. Materials for Masses: SVBRDF Acquisition with a Single Mobile Phone Image. In Computer Vision – ECCV 2018 – 15th European Conference, Munich, Germany, September 8-14, 2018, Proceedings, Part III(Lecture Notes in Computer Science, Vol. 11207). 74–90.
    22. Rosalie Martin, Arthur Roullier, Romain Rouffet, Adrien Kaiser, and Tamy Boubekeur. 2022. MaterIA: Single Image High-Resolution Material Capture in the Wild. Computer Graphics Forum 41, 2 (2022), 163–177. https://doi.org/10.1111/cgf.14466 arXiv:https://onlinelibrary.wiley.com/doi/pdf/10.1111/cgf.14466
    23. Wojciech Matusik, Hanspeter Pfister, Matt Brand, and Leonard McMillan. 2003. A Data-Driven Reflectance Model. ACM Trans. Graph. 22, 3 (2003), 759–769.
    24. Morten S Mikkelsen. 2022. Practical Real-Time Hex-Tiling. Journal of Computer Graphics Techniques Vol 11, 2 (2022).
    25. Gilles Rainer, Abhijeet Ghosh, Wenzel Jakob, and Tim Weyrich. 2020. Unified Neural Encoding of BTFs. Computer Graphics Forum (Proceedings of Eurographics) 39, 2 (2020), 167–178.
    26. Aditya Ramesh, Prafulla Dhariwal, Alex Nichol, Casey Chu, and Mark Chen. 2022. Hierarchical text-conditional image generation with clip latents. arXiv preprint arXiv:2204.06125 (2022).
    27. Olaf Ronneberger, Philipp Fischer, and Thomas Brox. 2015. U-net: Convolutional networks for biomedical image segmentation. In International Conference on Medical image computing and computer-assisted intervention. Springer, 234–241.
    28. Bruce Walter, Stephen R. Marschner, Hongsong Li, and Kenneth E. Torrance. 2007. Microfacet Models for Refraction Through Rough Surfaces. EGSR 2007 (2007), 195–206.
    29. Xilong Zhou, Milos Hasan, Valentin Deschaintre, Paul Guerrero, Kalyan Sunkavalli, and Nima Khademi Kalantari. 2022. TileGen: Tileable, Controllable Material Generation and Capture. In SIGGRAPH Asia 2022 Conference Papers (Daegu, Republic of Korea) (SA ’22). Association for Computing Machinery, New York, NY, USA, Article 34, 9 pages. https://doi.org/10.1145/3550469.3555403
    30. Xilong Zhou and Nima Khademi Kalantari. 2021. Adversarial Single-Image SVBRDF Estimation with Hybrid Training. Computer Graphics Forum (2021). https://doi.org/10.1111/cgf.142635
    31. Xilong Zhou and Nima Khademi Kalantari. 2022. Look-Ahead Training with Learned Reflectance Loss for Single-Image SVBRDF Estimation. ACM Transactions on Graphics (TOG) 41, 6 (2022), 1–12.


ACM Digital Library Publication:



Overview Page: