“Perspective shadow maps” by Stamminger and Drettakis

  • ©Marc Stamminger and George Drettakis

  • ©Marc Stamminger and George Drettakis




    Perspective shadow maps



    Shadow maps are probably the most widely used means for the generation of shadows, despite their well known aliasing problems. In this paper we introduce perspective shadow maps, which are generated in normalized device coordinate space, i.e., after perspective transformation. This results in important reduction of shadow map aliasing with almost no overhead. We correctly treat light source transformations and show how to include all objects which cast shadows in the transformed space. Perspective shadow maps can directly replace standard shadow maps for interactive hardware accelerated rendering as well as in high-quality, offline renderers.


    1. F. C. Crow. Shadow algorithms for computer graphics. Computer Graphics (Proc. of SIGGRAPH 77), 11(2):242-248, 1977. Google Scholar
    2. R. Fernando, S. Fernandez, K. Bala, and D. P. Greenberg. Adaptive shadow maps. Proc. of SIGGRAPH 2001, pages 387-390, 2001. Google Scholar
    3. J. D. Foley, A. van Dam, S. K. Feiner, and J. F. Hughes. Computer graphics, principles and practice, second edition. 1990. Google Scholar
    4. P. Heckbert. Survey of Texture Mapping. IEEE Computer Graphics and Applications, 6(11):56-67, November 1986. Google Scholar
    5. T. Lokovic and E. Veach. Deep shadow maps. Proc. of SIGGRAPH 2000, pages 385-392, 2000. Google Scholar
    6. J. S. Montrym, D. R. Baum, D. L. Dignam, and C. J. Migdal. Infinite-reality: A real-time graphics system. Proc. of SIGGRAPH 97, pages 293-302, 1997. Google Scholar
    7. nvidia. webpage. http://developer.nvidia.com/view.asp?IO=cedec_shadowmap.Google Scholar
    8. H. Pfister, M. Zwicker, J. van Baar, and M. Gross. Surfels: Surface elements as rendering primitives. Proceedings of SIGGRAPH 2000, pages 335-342, 2000. Google Scholar
    9. W. T. Reeves, D. H. Salesin, and R. L. Cook. Rendering antialiased shadows with depth maps. Computer Graphics (Proc. of SIGGRAPH 87), 21(4):283-291, 1987. Google Scholar
    10. S. Rusinkiewicz and M. Levoy. Qsplat: A multiresolution point rendering system for large meshes. Proc. of SIGGRAPH 2000, pages 343-352, 2000. Google Scholar
    11. M. Stamminger and G. Drettakis. Interactive sampling and rendering for complex and procedural geometry. In S. Gortler and K. Myszkowski, editors, Rendering Techniques 2001 (12th Eurographics Workshop on Rendering), pages 151-162. Springer Verlag, 2001. Google Scholar
    12. K. Tadamura, X. Qin, G. Jiao, and E. Nakamae. Rendering optimal solar shadows with plural sunlight depth buffers. The Visual Computer, 17(2):76-90, 2001.Google Scholar
    13. S. Upstill. The RenderMan Companion. Addison-Wesley, 1990.Google Scholar
    14. M. Wand, M. Fischer, I. Peter, F. Meyer auf der Heide, and W. Straßer. The randomized z-buffer algorithm: Interactive rendering of highly complex scenes. Proc. of SIGGRAPH 2001, pages 361-370, 2001. Google Scholar
    15. K. Weiler and K. Atherton. Hidden surface removal using polygon area sorting. Computer Graphics (Proc. of SIGGRAPH 77), 11(2):214-222, 1977. Google Scholar
    16. L. Williams. Casting curved shadows on curved surfaces. Computer Graphics (Proc. of SIGGRAPH 78), 12(3):270-274, 1978. Google Scholar
    17. A. Woo, P. Poulin, and A. Fournier. A survey of shadow algorithms. IEEE Computer Graphics and Applications, 10(6):13-32, November 1990. Google Scholar

ACM Digital Library Publication:

Overview Page: