“Perceptual evaluation of liquid simulation methods” by Um, Hu and Thuerey

  • ©Kiwon Um, Xiangyu Hu, and Nils Thuerey




    Perceptual evaluation of liquid simulation methods

Session/Category Title: Fluids III




    This paper proposes a novel framework to evaluate fluid simulation methods based on crowd-sourced user studies in order to robustly gather large numbers of opinions. The key idea for a robust and reliable evaluation is to use a reference video from a carefully selected real-world setup in the user study. By conducting a series of controlled user studies and comparing their evaluation results, we observe various factors that affect the perceptual evaluation. Our data show that the availability of a reference video makes the evaluation consistent. We introduce this approach for computing scores of simulation methods as visual accuracy metric. As an application of the proposed framework, a variety of popular simulation methods are evaluated.


    1. S. Adami, X. Y. Hu, and N. A. Adams. 2012. A generalized wall boundary condition for smoothed particle hydrodynamics. J. Comput. Phys. 231, 21 (Aug. 2012), 7057–7075. Google ScholarDigital Library
    2. Bart Adams, Mark Pauly, Richard Keiser, and Leonidas J. Guibas. 2007. Adaptively Sampled Particle Fluids. ACM Trans. Graph. 26, 3, Article 48 (July 2007), 7 pages. Google ScholarDigital Library
    3. Nadir Akinci, Markus Ihmsen, Gizem Akinci, Barbara Solenthaler, and Matthias Teschner. 2012. Versatile Rigid-Fluid Coupling for Incompressible SPH. ACM Trans. Graph. 31, 4 (July 2012), 62:1–62:8. Google ScholarDigital Library
    4. Ryoichi Ando, Nils Thurey, and Reiji Tsuruno. 2012. Preserving Fluid Sheets with Adaptively Sampled Anisotropic Particles. IEEE Transactions on Visualization and Computer Graphics 18, 8 (2012), 1202–1214. Google ScholarDigital Library
    5. Ryoichi Ando, Nils Thürey, and Chris Wojtan. 2013. Highly Adaptive Liquid Simulations on Tetrahedral Meshes. ACM Trans. Graph. 32, 4 (July 2013), 103:1–103:10. Google ScholarDigital Library
    6. Tunç Ozan Aydin, Martin Čadík, Karol Myszkowski, and Hans-Peter Seidel. 2010. Video Quality Assessment for Computer Graphics Applications. ACM Trans. Graph. 29, 6 (Dec. 2010), 161:1–161:12. Google ScholarDigital Library
    7. Christopher Batty, Florence Bertails, and Robert Bridson. 2007. A Fast Variational Framework for Accurate Solid-fluid Coupling. ACM Trans. Graph. 26, 3, Article 100 (July 2007), 7 pages. Google ScholarDigital Library
    8. Markus Becker and Matthias Teschner. 2007. Weakly compressible SPH for free surface flows. In Proceedings of the 2007 ACM SIGGRAPH/Eurographics symposium on Computer animation (SCA ’07). Eurographics Association, Aire-la-Ville, Switzerland, Switzerland, 209–217. http://dl.acm.org/citation.cfm?id=1272690.1272719Google ScholarDigital Library
    9. Micah Bojrab, Michel Abdul-Massih, and Bedrich Benes. 2013. Perceptual Importance of Lighting Phenomena in Rendering of Animated Water. ACM Trans. Appl. Percept. 10, 1 (March 2013), 2:1–2:18. Google ScholarDigital Library
    10. Elkin Botia-Vera, Antonio Souto-Iglesias, Gabriele Bulian, and L. Lobovský. 2010. Three SPH Novel Benchmark Test Cases for free surface flows. In Proceedings of the 5th ERCOFTAC SPHERIC workshop on SPH applications. Manchester, UK.Google Scholar
    11. Ralph Allan Bradley and Milton E. Terry. 1952. Rank Analysis of Incomplete Block Designs: I. The Method of Paired Comparisons. Biometrika 39, 3/4 (1952), 324–345. Google ScholarCross Ref
    12. Robert Bridson. 2015. Fluid Simulation for Computer Graphics. CRC Press.Google Scholar
    13. Kirsten Cater, Alan Chalmers, and Patrick Ledda. 2002. Selective Quality Rendering by Exploiting Human Inattentional Blindness: Looking but Not Seeing. In Proceedings of the ACM Symposium on Virtual Reality Software and Technology (VRST ’02). ACM, New York, NY, USA, 17–24. Google ScholarDigital Library
    14. Forrester Cole, Kevin Sanik, Doug DeCarlo, Adam Finkelstein, Thomas Funkhouser, Szymon Rusinkiewicz, and Manish Singh. 2009. How Well Do Line Drawings Depict Shape? ACM Trans. Graph. 28, 3, Article 28 (July 2009), 9 pages. Google ScholarDigital Library
    15. Gilles Debunne, Mathieu Desbrun, Alan Barr, and Marie-Paule Cani. 1999. Interactive multiresolution animation of deformable models. In Computer Animation and Simulation ’99. Springer, 133–144. Google ScholarCross Ref
    16. Piotr Didyk, Elmar Eisemann, Tobias Ritschel, Karol Myszkowski, and Hans-Peter Seidel. 2010. Perceptually-motivated Real-time Temporal Upsampling of 3D Content for High-refresh-rate Displays. Computer Graphics Forum 29, 2 (2010), 713–722. Google ScholarCross Ref
    17. Reynald Dumont, Fabio Pellacini, and James A. Ferwerda. 2003. Perceptually-Driven Decision Theory for Interactive Realistic Rendering. ACM Trans. Graph. 22, 2 (April 2003), 152–181. Google ScholarDigital Library
    18. Douglas Enright, Ronald Fedkiw, Joel Ferziger, and Ian Mitchell. 2002. A Hybrid Particle Level Set Method for Improved Interface Capturing. J. Comput. Phys. 183, 1 (Nov. 2002), 83–116. Google ScholarDigital Library
    19. Doug Enright, Duc Nguyen, Frederic Gibou, and Ron Fedkiw. 2003. Using the Particle Level Set Method and a Second Order Accurate Pressure Boundary Condition for Free Surface Flows. In Proceedings of 4th ASME-JSME Joint Fluids Summer Engeneering Conference, Vol. 2. 337–342. Google ScholarCross Ref
    20. Florian Ferstl, Ryoichi Ando, Chris Wojtan, Rüdiger Westermann, and Nils Thuerey. 2016. Narrow band FLIP for liquid simulations. Computer Graphics Forum 35, 2 (2016), 225–232. Google ScholarDigital Library
    21. Nick Foster and Ronald Fedkiw. 2001. Practical Animation of Liquids. In Proceedings of the 28th Annual Conference on Computer Graphics and Interactive Techniques (SIGGRAPH ’01). ACM, New York, NY, USA, 23–30. Google ScholarDigital Library
    22. Nick Foster and Dimitri Metaxas. 1996. Realistic Animation of Liquids. Graphical Models and Image Processing 58, 5 (Sept. 1996), 471–483. Google ScholarDigital Library
    23. Dan Gerszewski and Adam W. Bargteil. 2013. Physics-Based Animation of Large-Scale Splashing Liquids. ACM Trans. Graph. 32, 6 (Nov. 2013), 185:1–185:6. Google ScholarDigital Library
    24. D. Han and J. Keyser. 2016. Effect of Low-Level Visual Details in Perception of Deformation. Computer Graphics Forum 35, 2 (May 2016), 375–383. Google ScholarDigital Library
    25. Ludovic Hoyet, Kenneth Ryall, Katja Zibrek, Hwangpil Park, Jehee Lee, Jessica Hodgins, and Carol O’Sullivan. 2013. Evaluating the Distinctiveness and Attractiveness of Human Motions on Realistic Virtual Bodies. ACM Trans. Graph. 32, 6 (Nov. 2013), 204:1–204:11. Google ScholarDigital Library
    26. David R. Hunter. 2004. MM algorithms for generalized Bradley-Terry models. The Annals of Statistics 32, 1 (Feb. 2004), 384–406. Google ScholarCross Ref
    27. Markus Ihmsen, Nadir Akinci, Gizem Akinci, and Matthias Teschner. 2012. Unified spray, foam and air bubbles for particle-based fluids. The Visual Computer 28, 6–8 (2012), 669–677.Google ScholarDigital Library
    28. Markus Ihmsen, Jens Cornelis, Barbara Solenthaler, Christopher Horvath, and Matthias Teschner. 2014a. Implicit Incompressible SPH. IEEE Transactions on Visualization and Computer Graphics 20, 3 (March 2014), 426–435. Google ScholarDigital Library
    29. Markus Ihmsen, Jens Orthmann, Barbara Solenthaler, Andreas Kolb, and Matthias Teschner. 2014b. SPH Fluids in Computer Graphics. In Eurographics 2014 – State of the Art Reports. Eurographics Association, Strasbourg, France, 21–42. Google ScholarCross Ref
    30. R. Issa, D. Violeau, Antonio Souto-Iglesias, and Elkin Botia-Vera. 2017. SPHERIC Validation Tests. http://spheric-sph.org/validation-tests. (2017).Google Scholar
    31. Chenfanfu Jiang, Craig Schroeder, Andrew Selle, Joseph Teran, and Alexey Stomakhin. 2015. The Affine Particle-in-cell Method. ACM Trans. Graph. 34, 4 (July 2015), 51:1–51:10. Google ScholarDigital Library
    32. ByungMoon Kim, Yingjie Liu, Ignacio Llamas, and Jarek Rossignac. 2005. FlowFixer: Using BFECC for Fluid Simulation. In Eurographics Conference on Natural Phenomena. Eurographics Association, Dublin, Ireland, 51–56. Google ScholarCross Ref
    33. K. M. T. Kleefsman, G. Fekken, A. E. P. Veldman, B. Iwanowski, and B. Buchner. 2005. A Volume-of-Fluid Based Simulation Method for Wave Impact Problems. J. Comput. Phys. 206, 1 (June 2005), 363–393. Google ScholarDigital Library
    34. Gondy Leroy. 2011. Designing User Studies in Informatics. Springer London. Google ScholarCross Ref
    35. F. Losasso, J.O. Talton, N. Kwatra, and R. Fedkiw. 2008. Two-Way Coupled SPH and Particle Level Set Fluid Simulation. IEEE Transactions on Visualization and Computer Graphics 14, 4 (2008), 797–804. Google ScholarDigital Library
    36. Miles Macklin and Matthias Müller. 2013. Position Based Fluids. ACM Trans. Graph. 32, 4 (July 2013), 104:1–104:12. Google ScholarDigital Library
    37. Belen Masia, Sandra Agustin, Roland W. Fleming, Olga Sorkine, and Diego Gutierrez. 2009. Evaluation of Reverse Tone Mapping Through Varying Exposure Conditions. ACM Trans. Graph. 28, 5, Article 160 (Dec. 2009), 8 pages. Google ScholarDigital Library
    38. Rachel McDonnell, Michéal Larkin, Simon Dobbyn, Steven Collins, and Carol O’Sullivan. 2008. Clone Attack! Perception of Crowd Variety. ACM Trans. Graph. 27, 3, Article 26 (Aug. 2008), 8 pages. Google ScholarDigital Library
    39. Matthias Müller, David Charypar, and Markus Gross. 2003. Particle-Based Fluid Simulation for Interactive Applications. In Proceedings of the 2003 ACM SIGGRAPH/Eurographics Symposium on Computer Animation (SCA ’03). Eurographics Association, Aire-la-Ville, Switzerland, Switzerland, 154–159.Google ScholarDigital Library
    40. Zherong Pan, Jin Huang, Yiying Tong, Changxi Zheng, and Hujun Bao. 2013. Interactive Localized Liquid Motion Editing. ACM Trans. Graph. 32, 6 (Nov. 2013), 184:1–184:10. Google ScholarDigital Library
    41. Karl Pearson. 1920. Notes on the History of Correlation. Biometrika 13, 1 (Jan. 1920), 25–45. Google ScholarCross Ref
    42. Daniel Ram, Theodore Gast, Chenfanfu Jiang, Craig Schroeder, Alexey Stomakhin, Joseph Teran, and Pirouz Kavehpour. 2015. A Material Point Method for Viscoelastic Fluids, Foams and Sponges. In Proceedings of the 2015 ACM SIGGRAPH/Eurographics Symposium on Computer Animation (SCA ’15). ACM, New York, NY, USA, 157–163. Google ScholarDigital Library
    43. Karthik Raveendran, Chris Wojtan, and Greg Turk. 2011. Hybrid Smoothed Particle Hydrodynamics. In Proceedings of the 2011 ACM SIGGRAPH/Eurographics Symposium on Computer Animation (SCA ’11). ACM, New York, NY, USA, 33–42. Google ScholarDigital Library
    44. B. Solenthaler and R. Pajarola. 2009. Predictive-corrective Incompressible SPH. ACM Trans. Graph. 28, 3, Article 40 (July 2009), 6 pages. Google ScholarDigital Library
    45. Jos Stam. 1999. Stable Fluids. In Proceedings of the 26th Annual Conference on Computer Graphics and Interactive Techniques (SIGGRAPH ’99). ACM Press/Addison-Wesley Publishing Co., New York, NY, USA, 121–128. Google ScholarDigital Library
    46. Alexey Stomakhin, Craig Schroeder, Lawrence Chai, Joseph Teran, and Andrew Selle. 2013. A Material Point Method for Snow Simulation. ACM Trans. Graph. 32, 4 (July 2013), 102:1–102:10. Google ScholarDigital Library
    47. Kiwon Um, Seungho Baek, and JungHyun Han. 2014. Advanced Hybrid Particle-Grid Method with Sub-Grid Particle Correction. Computer Graphics Forum 33, 7 (Oct. 2014), 209–218. Google ScholarDigital Library
    48. Kiwon Um, Xiangyu Hu, and Nils Thuerey. 2017. Liquid Splash Modeling with Neural Networks. (2017). arXiv:1704.04456Google Scholar
    49. Yongning Zhu and Robert Bridson. 2005. Animating Sand As a Fluid. ACM Trans. Graph. 24, 3 (July 2005), 965–972. Google ScholarDigital Library

ACM Digital Library Publication:

Overview Page: