“Perception of complex aggregates” by Ramanarayanan, Bala and Ferwerda

  • ©Ganesh Ramanarayanan, Kavita Bala, and James A. Ferwerda




    Perception of complex aggregates



    Aggregates of individual objects, such as forests, crowds, and piles of fruit, are a common source of complexity in computer graphics scenes. When viewing an aggregate, observers attend less to individual objects and focus more on overall properties such as numerosity, variety, and arrangement. Paradoxically, rendering and modeling costs increase with aggregate complexity, exactly when observers are attending less to individual objects.In this paper we take some first steps to characterize the limits of visual coding of aggregates to efficiently represent their appearance in scenes. We describe psychophysical experiments that explore the roles played by the geometric and material properties of individual objects in observers’ abilities to discriminate different aggregate collections. Based on these experiments we derive metrics to predict when two aggregates have the same appearance, even when composed of different objects. In a follow-up experiment we confirm that these metrics can be used to predict the appearance of a range of realistic aggregates. Finally, as a proof-of-concept we show how these new aggregate perception metrics can be applied to simplify scenes by allowing substitution of geometrically simpler aggregates for more complex ones without changing appearance.


    1. Bacon, W. F., and Egeth, H. E. 1991. Local processes in preattentive feature detection. J. Exp. Psych.: Human Percep. and Perf. 17, 77–90.Google ScholarCross Ref
    2. Beck, J. 1972. Similarity grouping and peripheral discriminability under uncertainty. American Journal of Psychology 85, 1–19.Google ScholarCross Ref
    3. Beck, J. 1982. Textural segmentation. Erlbaum, Hillsdale, NJ, 285–317.Google Scholar
    4. Bergen, J. R., and Adelson, E. H. 1988. Early vision and texture perception. Nature 333, 6171, 363–365.Google Scholar
    5. Brownbill, A. 1996. Reducing the storage required to render L-system based models. Ph.D. thesis, University of Calgary. Google ScholarDigital Library
    6. Cohen, J., Olano, M., and Manocha, D. 1998. Appearance-preserving simplification. In SIGGRAPH ’98, ACM, New York, NY, USA, 115–122. Google ScholarDigital Library
    7. Cook, R. L., Halstead, J., Planck, M., and Ryu, D. 2007. Stochastic simplification of aggregate detail. ACM Trans. Graph. 26, 3, 79. Google ScholarDigital Library
    8. Debevec, P. E., and Malik, J. 1997. Recovering high dynamic range radiance maps from photographs. In SIGGRAPH ’97, 369–378. Google ScholarDigital Library
    9. Desimone, R., and Duncan, J. 1995. Neural mechanisms of selective visual attention. Annual Review of Neuroscience 18, 193–222.Google ScholarCross Ref
    10. Deussen, O., Hanrahan, P., Lintermann, B., Měch, R., Pharr, M., and Prusinkiewicz, P. 1998. Realistic modeling and rendering of plant ecosystems. In SIGGRAPH ’98, 275–286. Google ScholarDigital Library
    11. Dunbar, D., and Humphreys, G. 2006. A spatial data structure for fast poisson-disk sample generation. ACM Trans. Graph. 25, 3, 503–508. Google ScholarDigital Library
    12. Ferwerda, J. A., Pellacini, F., and Greenberg, D. P. 2001. A psychophysically-based model of surface gloss perception. In Proceedings of the SPIE: Human Vision and Electronic Imaging VI, vol. 4299, 291–301.Google Scholar
    13. Fleming, R. W., Torralba, A., and Adelson, E. H. 2004. Specular reflections and the perception of shape. Journal of Vision 4, 9, 798–820.Google ScholarCross Ref
    14. Found, A., and Müller, H. J. 1995. Searching for unknown feature targets on more than one dimension: further evidence for a ‘dimension weighting’ account. Perception and Psychophysics 58, 1, 88–101.Google ScholarCross Ref
    15. Gurnsey, R., and Browse, R. A. 1989. Asymmetries in visual texture discrimination. Spatial Vision 4, 31–44.Google ScholarCross Ref
    16. Hart, J. C. 1992. The object instancing paradigm for linear fractal modeling. Proceedings of Graphics Interfaces, 224–231. Google ScholarDigital Library
    17. Heaps, C., and Handel, S. 1999. Similarity and features of natural textures. Journal of Experimental Psychology: Human Perception and Performance 25, 2, 299–320.Google ScholarCross Ref
    18. Itti, L., and Koch, C. 2001. Computational modeling of visual attention. Nature Reviews Neuroscience 2, 3 (Mar), 194–203.Google ScholarCross Ref
    19. Julesz, B. 1962. Visual pattern discrimination. IRE Transactions on Information Theory 8, 84–92.Google ScholarCross Ref
    20. Julesz, B. 1981. Textons, the elements of texture perception, and their interactions. Nature 290, 91–97.Google ScholarCross Ref
    21. Khan, E. A., Reinhard, E., Fleming, R. W., and Bülthoff, H. H. 2006. Image-based material editing. ACM Trans. Graph. 25, 3, 654–663. Google ScholarDigital Library
    22. Koch, C., and Ullman, S. 1985. Shifts in selective visual attention: towards the underlying neural circuitry. Human Neurobiology 4, 219–227.Google Scholar
    23. Koffka, K. 1935. Principles of Gestalt Psychology. Harcourt, Brace and World, New York, NY.Google Scholar
    24. Lee, C. H., Varshney, A., and Jacobs, D. W. 2005. Mesh saliency. ACM Trans. Graph. 24, 3, 659–666. Google ScholarDigital Library
    25. Luebke, D. P., and Hallen, B. 2001. Perceptually-driven simplification for interactive rendering. In Proceedings of the 12th Eurographics Workshop on Rendering Techniques, Springer-Verlag, London, UK, 223–234. Google ScholarDigital Library
    26. Luebke, D., Reddy, M., Cohen, J., Varshney, A., Watson, B., and Huebner, R. 2002. Level of Detail for Computer Graphics. Morgan Kaufmann. Google ScholarDigital Library
    27. Malik, J., and Perona, P. 1990. Preattentive texture discrimination with early vision mechanisms. Journal of the Optical Society of America A 7, 923–932.Google ScholarCross Ref
    28. Mantiuk, R., Daly, S., Myszkowski, K., and Seidel, H.-P. 2005. Predicting visible differences in high dynamic range images – model and its calibration. In Proceeindgs of the SPIE: Human Vision and Electronic Imaging X, vol. 5666, 204–214.Google Scholar
    29. Marr, D. 1976. Early processing of visual information. Phil. Trans. of the Royal Society London B 275, 483–519.Google ScholarCross Ref
    30. Nothdurft, H. C. 1985. Sensitivity for structure gradient in texture discrimination tasks. Vision Research 25, 1957–1968.Google ScholarCross Ref
    31. Oliva, A., and Torralba, A. 2001. Modeling the shape of a scene: A holistic representation of the spatial envelope. International Journal of Computer Vision 42, 3, 145–175. Google ScholarDigital Library
    32. Oliva, A., Mack, M. L., Srestha, M., and Peeper, A. 2004. Identifying the perceptual dimensions of visual complexity of scenes. 26th Annual Meeting of the Cognitive Science Society.Google Scholar
    33. Palmer, S. E. 1999. Vision science: From Photons to Phenomenology. Bradford Books/MIT Press, Cambridge, MA.Google Scholar
    34. Perlin, K. 2002. Improving noise. In SIGGRAPH ’02, ACM, New York, NY, USA, 681–682. Google ScholarDigital Library
    35. Potter, M. C. 1975. Meaning in visual search. Science 187, 4180, 965–966.Google Scholar
    36. Ramanarayanan, G., Ferwerda, J., Walter, B., and Bala, K. 2007. Visual equivalence: towards a new standard for image fidelity. ACM Trans. Graph. 26, 3, 76. Google ScholarDigital Library
    37. Rao, A. R., and Lohse, G. L. 1993. Identifying high-level features of texture perception. Graphical Models and Image Processing 55, 218–233. Google ScholarDigital Library
    38. Rosenholtz, R., Li, Y., and Nakano, L. 2007. Measuring visual clutter. J. Vis. 7, 2 (8), 1–22.Google ScholarCross Ref
    39. Rushmeier, H., Rogowitz, B. E., and Piatko, C. 2000. Perceptual issues in substituting texture for geometry. In Proceedings of the SPIE: Human Vision and Electronic Imaging V, vol. 3959, 372–383.Google ScholarCross Ref
    40. Sagi, D., and Julesz, B. 1987. Short-range limitation on detection of feature differences. Spatial Vision 2, 1, 39–49.Google ScholarCross Ref
    41. Smith, A. R. 1984. Plants, fractals, and formal languages. In SIGGRAPH ’84, 1–10. Google ScholarDigital Library
    42. Sutherland, I. E. 1963. A man-machine graphical communication system. Proceedings of the Spring Joint Computer Conference. Google ScholarDigital Library
    43. Theeuwes, J. 2004. Top-down search strategies cannot override attentional capture. Psychonomic Bulletin and Review 11, 1, 65–70.Google ScholarCross Ref
    44. Todd, J. T., Norman, J. F., Koenderink, J. J., and Kappers, A. M. L. 1997. Effects of texture, illumination, and surface reflectance on stereoscopic shape perception. Perception 26, 7, 807–822.Google ScholarCross Ref
    45. Treisman, A., and Gelade, G. 1980. A feature integration theory of attention. Cognitive Psychology 12, 97–136.Google ScholarCross Ref
    46. Vangorp, P., Laurijssen, J., and Dutré, P. 2007. The influence of shape on the perception of material reflectance. ACM Trans. Graph. 26, 3, 77. Google ScholarDigital Library
    47. Walter, B., Fernandez, S., Arbree, A., Bala, K., Donikian, M., and Greenberg, D. P. 2005. Lightcuts: a scalable approach to illumination. ACM Trans. Graph. 24, 3, 1098–1107. Google ScholarDigital Library
    48. Walter, B., Arbree, A., Bala, K., and Greenberg, D. P. 2006. Multidimensional lightcuts. ACM Trans. Graph. 24, 3, 1081–1088. Google ScholarDigital Library
    49. Ward, G. J. 1992. Measuring and modeling anisotropic reflection. In SIGGRAPH ’92, 265–272. Google ScholarDigital Library
    50. Watson, A. B., and Pelli, D. G. 1983. Quest: a bayesian adaptive psychometric method. Perception and Psychophysics 33, 2, 113–120.Google ScholarCross Ref
    51. Watson, B., Walker, N., and Hodges, L. F. 2004. Suprathreshold control of peripheral LOD. ACM Trans. Graph. 23, 3, 750–759. Google ScholarDigital Library
    52. Wichmann, F. A., and Hill, N. J. 2001. The psychometric function ii: Bootstrap-based confidence intervals and sampling. Perception and Psychophysics 63, 8, 1314–1329.Google ScholarCross Ref
    53. Wolfe, J. M. 1998. Visual search. University College London Press, London.Google Scholar

ACM Digital Library Publication: