“Path-space manipulation of physically-based light transport” by Schmidt, Novák, Meng, Kaplanyan, Reiner, et al. …

  • ©Thorsten-Walther Schmidt, Jan Novák, Johannes Meng, Anton S. Kaplanyan, Tim Reiner, Derek Nowrouzezahrai, and Carsten Dachsbacher

Conference:


Type:


Title:

    Path-space manipulation of physically-based light transport

Session/Category Title: Precomputed Rendering


Presenter(s)/Author(s):


Moderator(s):



Abstract:


    Industry-quality content creation relies on tools for lighting artists to quickly prototype, iterate, and refine final renders. As industry-leading studios quickly adopt physically-based rendering (PBR) across their art generation pipelines, many existing tools have become unsuitable as they address only simple effects without considering underlying PBR concepts and constraints. We present a novel light transport manipulation technique that operates directly on path-space solutions of the rendering equation. We expose intuitive direct and indirect manipulation approaches to edit complex effects such as (multi-refracted) caustics, diffuse and glossy indirect bounces, and direct/indirect shadows. With our sketch- and object-space selection, all built atop a parameterized regular expression engine, artists can search and isolate shading effects to inspect and edit. We classify and filter paths on the fly and visualize the selected transport phenomena. We survey artists who used our tool to manipulate complex phenomena on both static and animated scenes.

References:


    1. Banks, D. C. 1994. Illumination in diverse codimensions. In SIGGRAPH’94, 327–334. Google ScholarDigital Library
    2. Barzel, R. 1997. Lighting controls for computer cinematography. Journal of Graphics Tools 2, 1, 1–20. Google ScholarDigital Library
    3. Hachisuka, T., and Jensen, H. W. 2009. Stochastic progressive photon mapping. ACM Transactions on Graphics (Proc. SIGGRAPH) 28, 141:1–141:8. Google ScholarDigital Library
    4. Heckbert, P. S. 1990. Adaptive radiosity textures for bidirectional ray tracing. Computer Graphics (Proc. SIGGRAPH) 24, 4, 145–154. Google ScholarDigital Library
    5. Holten, D., and van Wijk, J. J. 2009. Force-directed edge bundling for graph visualization. Computer Graphics Forum 28, 3, 983–990. Google ScholarDigital Library
    6. Kerr, W. B., and Pellacini, F. 2009. Toward evaluating lighting design interface paradigms for novice users. ACM Transactions on Graphics (Proc. SIGGRAPH) 28, 3, 1–9. Google ScholarDigital Library
    7. Kerr, W. B., Pellacini, F., and Denning, J. D. 2010. Bendy-lights: artistic control of direct illumination by curving light rays. Computer Graphics Forum (Proc. EG Symposium on Rendering) 29, 4, 1451–1459. Google ScholarDigital Library
    8. Křivánek, J., Fajardo, M., Christensen, P. H., Tabellion, E., Bunnell, M., Larsson, D., and Kaplanyan, A. 2010. Global illumination across industries. In ACM SIGGRAPH Courses.Google Scholar
    9. Lafortune, E. P., and Willems, Y. D. 1993. Bi-directional path tracing. In Proc. Conference on Computational Graphics and Visualization Techniques, 145–153.Google Scholar
    10. Larson, G. W., and Shakespeare, R. 1998. Rendering with radiance: the art and science of lighting visualization. Morgan Kaufmann Publishers. Google ScholarDigital Library
    11. Lee, C. H., Hao, X., and Varshney, A. 2006. Geometry-dependent lighting. IEEE Transactions on Visualization and Computer Graphics 12, 2, 197–207. Google ScholarDigital Library
    12. McAuley, S., Hill, S., Hoffman, N., Gotanda, Y., Smits, B., Burley, B., and Martinez, A. 2012. Practical physically-based shading in film and game production. In ACM SIGGRAPH Courses. Google ScholarDigital Library
    13. Nowrouzezahrai, D., Johnson, J., Selle, A., Lacewell, D., Kaschalk, M., and Jarosz, W. 2011. A programmable system for artistic volumetric lighting. ACM Transactions on Graphics (Proc. SIGGRAPH) 30, 4, 29:1–29:8. Google ScholarDigital Library
    14. Obert, J., Krivánek, J., Pellacini, F., Sýkora, D., and Pattanaik, S. N. 2008. iCheat: A representation for artistic control of indirect cinematic lighting. Computer Graphics Forum (Proc. EG Symposium on Rendering) 27, 4, 1217–1223. Google ScholarDigital Library
    15. Obert, J., Pellacini, F., and Pattanaik, S. N. 2010. Visibility editing for all-frequency shadow design. Computer Graphics Forum 29, 4, 1441–1449. Google ScholarDigital Library
    16. Okabe, M., Matsushita, Y., Shen, L., and Igarashi, T. 2007. Illumination brush: Interactive design of all-frequency lighting. In Proc. Pacific Graphics, 171–180. Google ScholarDigital Library
    17. Pellacini, F., Tole, P., and Greenberg, D. P. 2002. A user interface for interactive cinematic shadow design. ACM Transactions on Graphics (Proc. SIGGRAPH) 21, 3, 563–566. Google ScholarDigital Library
    18. Pellacini, F., Battaglia, F., Morley, K., and Finkelstein, A. 2007. Lighting with paint. ACM Transactions on Graphics 26, 2. Google ScholarDigital Library
    19. Pellacini, F. 2010. envyLight: an interface for editing natural illumination. ACM Transactions on Graphics (Proc. SIGGRAPH) 29, 4, 34:1–34:8. Google ScholarDigital Library
    20. Pharr, M., and Humphreys, G. 2010. Physically Based Rendering, Second Edition: From Theory To Implementation. Morgan Kaufmann Publishers. Google ScholarDigital Library
    21. Poulin, P., and Fournier, A. 1992. Lights from highlights and shadows. In Proc. ACM SIGGRAPH Symposium on Interactive 3D Graphics and Games, 31–38. Google ScholarDigital Library
    22. Reiner, T., Kaplanyan, A., Reinhard, M., and Dachsbacher, C. 2012. Selective inspection and interactive visualization of light transport in virtual scenes. Computer Graphics Forum (Proc. Eurographics) 31, 2, 711–718. Google ScholarDigital Library
    23. Ritschel, T., Okabe, M., Thormählen, T., and Seidel, H.-P. 2009. Interactive reflection editing. ACM Transactions on Graphics (Proc. SIGGRAPH Asia) 28, 5, 129:1–129:7. Google ScholarDigital Library
    24. Ritschel, T., Thormählen, T., Dachsbacher, C., Kautz, J., and Seidel, H.-P. 2010. Interactive on-surface signal deformation. ACM Transactions on Graphics (Proc. SIGGRAPH) 29, 4, 36:1–36:8. Google ScholarDigital Library
    25. Tabellion, E., and Lamorlette, A. 2004. An approximate global illumination system for computer generated films. ACM Transactions on Graphics (Proc. SIGGRAPH) 23, 3, 469–476. Google ScholarDigital Library
    26. Veach, E., and Guibas, L. 1994. Bidirectional estimators for light transport. In Proc. EG Workshop on Rendering, 147–162.Google Scholar
    27. Veach, E., and Guibas, L. J. 1997. Metropolis light transport. In SIGGRAPH’97, 65–76. Google ScholarDigital Library
    28. Veach, E. 1998. Robust monte carlo methods for light transport simulation. PhD thesis. AAI9837162. Google ScholarDigital Library


ACM Digital Library Publication: