“Path replay backpropagation: differentiating light paths using constant memory and linear time” by Vicini, Speierer and Jakob

  • ©Delio Vicini, Sébastien Speierer, and Wenzel Jakob




    Path replay backpropagation: differentiating light paths using constant memory and linear time



    Differentiable physically-based rendering has become an indispensable tool for solving inverse problems involving light. Most applications in this area jointly optimize a large set of scene parameters to minimize an objective function, in which case reverse-mode differentiation is the method of choice for obtaining parameter gradients.However, existing techniques that perform the necessary differentiation step suffer from either statistical bias or a prohibitive cost in terms of memory and computation time. For example, standard techniques for automatic differentiation based on program transformation or Wengert tapes lead to impracticably large memory usage when applied to physically-based rendering algorithms. A recently proposed adjoint method by Nimier-David et al. [2020] reduces this to a constant memory footprint, but the computation time for unbiased gradient estimates then becomes quadratic in the number of scattering events along a light path. This is problematic when the scene contains highly scattering materials like participating media.In this paper, we propose a new unbiased backpropagation algorithm for rendering that only requires constant memory, and whose computation time is linear in the number of scattering events (i.e., just like path tracing). Our approach builds on the invertibility of the local Jacobian at scattering interactions to recover the various quantities needed for reverse-mode differentiation. Our method also extends to specular materials such as smooth dielectrics and conductors that cannot be handled by prior work.


    1. Dejan Azinović, Tzu-Mao Li, Anton Kaplanyan, and Matthias Nießner. 2019. Inverse Path Tracing for Joint Material and Lighting Estimation. In Proceedings of Computer Vision and Pattern Recognition (CVPR), IEEE.Google ScholarCross Ref
    2. Sai Bangaru, Tzu-Mao Li, and Frédo Durand. 2020. Unbiased Warped-Area Sampling for Differentiable Rendering. ACM Trans. Graph. (Proc. SIGGRAPH Asia) 39, 6 (2020), 245:1–245:18.Google Scholar
    3. Chengqian Che, Fujun Luan, Shuang Zhao, Kavita Bala, and Ioannis Gkioulekas. 2020. Towards Learning-based Inverse Subsurface Scattering. In 2020 IEEE International Conference on Computational Photography (ICCP). IEEE, 1–12.Google Scholar
    4. Min Chen and James Arvo. 2000. Theory and Application of Specular Path Perturbation. ACM Trans. Graph. 19, 4 (Oct. 2000), 246–278.Google ScholarDigital Library
    5. Tian Qi Chen, Yulia Rubanova, Jesse Bettencourt, and David K Duvenaud. 2018. Neural ordinary differential equations. In Advances in neural information processing systems. 6571–6583.Google Scholar
    6. Luc Devroye. 1986. Non-Uniform Random Variate Generation. Springer-Verlag.Google Scholar
    7. Laurent Dinh, David Krueger, and Yoshua Bengio. 2015. NICE: Non-linear Independent Components Estimation. In 3rd International Conference on Learning Representations (ICLR), San Diego, CA, USA, Workshop Track Proceedings. arXiv:1410.8516Google Scholar
    8. Laurent Dinh, Jascha Sohl-Dickstein, and Samy Bengio. 2016. Density estimation using Real NVP. arXiv:1605.08803Google Scholar
    9. Mathieu Galtier, Stéphane Blanco, Cyril Caliot, Christophe Coustet, Jérémi Dauchet, Mouna El Hafi, Vincent Eymet, Richard Fournier, Jacques Gautrais, Anaïs Khuong, et al. 2013. Integral formulation of null-collision Monte Carlo algorithms. Journal of Quantitative Spectroscopy and Radiative Transfer 125 (2013).Google Scholar
    10. Ioannis Gkioulekas, Anat Levin, and Todd Zickler. 2016. An evaluation of computational imaging techniques for heterogeneous inverse scattering. In European Conference on Computer Vision. Springer, 685–701.Google ScholarCross Ref
    11. Ioannis Gkioulekas, Shuang Zhao, Kavita Bala, Todd Zickler, and Anat Levin. 2013. Inverse Volume Rendering with Material Dictionaries. ACM Trans. Graph. (Proc. SIGGRAPH Asia) 32, 6, Article 162 (Nov. 2013).Google Scholar
    12. Aidan N. Gomez, Mengye Ren, Raquel Urtasun, and Roger B. Grosse. 2017. The Reversible Residual Network: Backpropagation without Storing Activations. In NIPS.Google Scholar
    13. Andreas Griewank and Andrea Walther. 2000. Algorithm 799: revolve: an implementation of checkpointing for the reverse or adjoint mode of computational differentiation. ACM Transactions on Mathematical Software (TOMS) 26, 1 (2000), 19–45.Google ScholarDigital Library
    14. Andreas Griewank and Andrea Walther. 2008. Evaluating derivatives: principles and techniques of algorithmic differentiation. Vol. 105. SIAM.Google Scholar
    15. Laurent Hascoet and Valérie Pascual. 2013. The Tapenade automatic differentiation tool: Principles, model, and specification. ACM Transactions on Mathematical Software (TOMS) 39, 3 (2013), 1–43.Google ScholarDigital Library
    16. Carole K. Hayakawa, Jerome Spanier, Frédéric Bevilacqua, Andrew K. Dunn, Joon S. You, Bruce J. Tromberg, and Vasan Venugopalan. 2001. Perturbation Monte Carlo methods to solve inverse photon migration problems in heterogeneous tissues. Opt. Lett. 26, 17 (Sep 2001), 1335–1337.Google ScholarCross Ref
    17. Shayan Hoshyari, Hongyi Xu, Espen Knoop, Stelian Coros, and Moritz Bächer. 2019. Vibration-minimizing motion retargeting for robotic characters. ACM Transactions on Graphics (TOG) 38, 4 (2019), 1–14.Google ScholarDigital Library
    18. Binh-Son Hua, Adrien Gruson, Victor Petitjean, Matthias Zwicker, Derek Nowrouzezahrai, Elmar Eisemann, and Toshiya Hachisuka. 2019. A Survey on Gradient-Domain Rendering. Computer Graphics Forum 38, 2 (2019), 455–472.Google ScholarCross Ref
    19. Homan Igehy. 1999. Tracing Ray Differentials. In Proceedings of the 26th Annual Conference on Computer Graphics and Interactive Techniques (SIGGRAPH 99). ACM Press/Addison-Wesley Publishing Co., USA, 179–186.Google ScholarDigital Library
    20. Wenzel Jakob and Steve Marschner. 2012. Manifold Exploration: A Markov Chain Monte Carlo Technique for Rendering Scenes with Difficult Specular Transport. ACM Trans. Graph. 31, 4 (July 2012).Google ScholarDigital Library
    21. James T. Kajiya. 1986. The Rendering Equation. In Proc. of Computer Graphics and Interactive Techniques (SIGGRAPH ’86). ACM, New York, NY, USA, 143–150.Google ScholarDigital Library
    22. Hiroharu Kato, Yoshitaka Ushiku, and Tatsuya Harada. 2018. Neural 3D Mesh Renderer. In IEEE Conference on Computer Vision and Pattern Recognition (CVPR).Google ScholarCross Ref
    23. Pramook Khungurn, Daniel Schroeder, Shuang Zhao, Kavita Bala, and Steve Marschner. 2015. Matching Real Fabrics with Micro-Appearance Models. ACM Trans. Graph. 35, 1, Article 1 (Dec. 2015), 26 pages.Google ScholarDigital Library
    24. Peter Kutz, Ralf Habel, Yining Karl Li, and Jan Novák. 2017. Spectral and Decomposition Tracking for Rendering Heterogeneous Volumes. ACM Trans. Graph. (Proc. SIGGRAPH) 36, 4, Article 111 (2017), 111:1–111:16 pages.Google ScholarDigital Library
    25. Samuli Laine, Janne Hellsten, Tero Karras, Yeongho Seol, Jaakko Lehtinen, and Timo Aila. 2020. Modular Primitives for High-Performance Differentiable Rendering. ACM Transactions on Graphics 39, 6 (2020).Google ScholarDigital Library
    26. Tzu-Mao Li, Miika Aittala, Frédo Durand, and Jaakko Lehtinen. 2018. Differentiable Monte Carlo Ray Tracing through Edge Sampling. ACM Trans. Graph. (Proc. SIGGRAPH Asia) 37, 6 (2018), 222:1–222:11.Google Scholar
    27. Seppo Linnainmaa. 1976. Taylor expansion of the accumulated rounding error. BIT Numerical Mathematics 16, 2 (1976), 146–160.Google ScholarDigital Library
    28. Shichen Liu, Weikai Chen, Tianye Li, and Hao Li. 2019. Soft Rasterizer: Differentiable Rendering for Unsupervised Single-View Mesh Reconstruction. CoRR (2019). arXiv:1901.05567Google Scholar
    29. Matthew M Loper and Michael J Black. 2014. OpenDR: An approximate differentiable renderer. In European Conference on Computer Vision. Springer.Google ScholarCross Ref
    30. Guillaume Loubet, Nicolas Holzschuch, and Wenzel Jakob. 2019. Reparameterizing Discontinuous Integrands for Differentiable Rendering. ACM Transactions on Graphics 38, 6 (Dec. 2019).Google ScholarDigital Library
    31. Iván Lux and Lázló Koblinger. 1990. Monte Carlo Particle Transport Methods: Neutron and Photon Calculations. CRC Press, Boston.Google Scholar
    32. Jiahui Lyu, Bojian Wu, Dani Lischinski, Daniel Cohen-Or, and Hui Huang. 2020. Differentiable Refraction-Tracing for Mesh Reconstruction of Transparent Objects. ACM Trans. Graph. (Proc. SIGGRAPH Asia) 39, 6 (2020), 195:1–195:13.Google Scholar
    33. Antoine McNamara, Adrien Treuille, Zoran Popović, and Jos Stam. 2004. Fluid control using the adjoint method. In ACM Transactions On Graphics (TOG), Vol. 23. ACM, 449–456.Google ScholarDigital Library
    34. Don Mitchell and Pat Hanrahan. 1992. Illumination from curved reflectors. In Proceedings of the 19th annual conference on Computer graphics and interactive techniques. 283–291.Google ScholarDigital Library
    35. Merlin Nimier-David, Sébastien Speierer, Benoît Ruiz, and Wenzel Jakob. 2020. Radiative Backpropagation: An Adjoint Method for Lightning-Fast Differentiable Rendering. ACM Trans. Graph. (Proc. SIGGRAPH) 39, 4, Article 146 (July 2020), 15 pages.Google ScholarDigital Library
    36. Merlin Nimier-David, Delio Vicini, Tizian Zeltner, and Wenzel Jakob. 2019. Mitsuba 2: A Retargetable Forward and Inverse Renderer. ACM Trans. Graph. (Proc. SIGGRAPH Asia) 38, 6 (Nov. 2019), 17 pages.Google ScholarDigital Library
    37. Jan Novák, Iliyan Georgiev, Johannes Hanika, Jaroslav Křivánek, and Wojciech Jarosz. 2018. Monte Carlo Methods for Physically Based Volume Rendering. In ACM SIGGRAPH 2018 Courses (Vancouver, British Columbia, Canada) (SIGGRAPH ’18). ACM, New York, NY, USA, 14:1–14:1.Google Scholar
    38. Jan Novák, Andrew Selle, and Wojciech Jarosz. 2014. Residual Ratio Tracking for Estimating Attenuation in Participating Media. ACM Transactions on Graphics (Proceedings of SIGGRAPH Asia) 33, 6 (Nov. 2014).Google ScholarDigital Library
    39. Steven G. Parker, James Bigler, Andreas Dietrich, Heiko Friedrich, Jared Hoberock, David Luebke, David McAllister, Morgan McGuire, Keith Morley, Austin Robison, and Martin Stich. 2010. OptiX: A General Purpose Ray Tracing Engine. ACM Trans. Graph. (Proc. SIGGRAPH), Article 66 (2010), 13 pages.Google Scholar
    40. Felix Petersen, Amit H. Bermano, Oliver Deussen, and Daniel Cohen-Or. 2019. Pix2Vex: Image-to-Geometry Reconstruction using a Smooth Differentiable Renderer. CoRR (2019). arXiv:1903.11149Google Scholar
    41. Lev Semenovich Pontryagin. 1962. Mathematical theory of optimal processes. CRC Press.Google Scholar
    42. Ravi Ramamoorthi, Dhruv Mahajan, and Peter Belhumeur. 2007. A first-order analysis of lighting, shading, and shadows. ACM Transactions on Graphics (TOG) 26, 1 (2007).Google ScholarDigital Library
    43. Helge Rhodin, Nadia Robertini, Christian Richardt, Hans-Peter Seidel, and Christian Theobalt. 2015. A Versatile Scene Model with Differentiable Visibility Applied to Generative Pose Estimation. In Proceedings of ICCV 2015.Google ScholarDigital Library
    44. David E. Rumelhart, Geoffrey E. Hinton, and Ronald J. Williams. 1986. Learning Representations by Back-propagating Errors. Nature 323, 6088 (1986), 533–536. http://www.nature.com/articles/323533a0Google ScholarCross Ref
    45. NH Shimada and Toshiya Hachisuka. 2020. Quantum Coin Method for Numerical Integration. In Computer Graphics Forum. Wiley Online Library.Google Scholar
    46. Jeffrey Mark Siskind and Barak A. Pearlmutter. 2008. Nesting forward-mode AD in a functional framework. Higher-Order and Symbolic Computation 21, 4 (2008), 361–376.Google ScholarDigital Library
    47. JM Tregan, S Blanco, J Dauchet, M Hafi, R Fournier, L Ibarrart, P Lapeyre, and N Villefranque. 2019. Convergence issues in derivatives of Monte Carlo null-collision integral formulations: a solution. (2019). arXiv:1903.06508Google Scholar
    48. Eric Veach and Leonidas Guibas. 1995. Bidirectional estimators for light transport. In Photorealistic Rendering Techniques. Springer, 145–167.Google Scholar
    49. Greg Ward and Paul Heckbert. 1992. Irradiance gradients. Technical Report. Lawrence Berkeley Lab., CA (United States); Ecole Polytechnique Federale, Lausanne (Switzerland); Technische Hogeschool Delft (Netherlands). Dept. of Technical Mathematics and Informatics.Google Scholar
    50. E. R. Woodcock, T. Murphy, P. J. Hemmings, and T. C. Longworth. 1965. Techniques used in the GEM code for Monte Carlo neutronics calculations in reactors and other systems of complex geometry. Applications of Computing Methods to Reactor Problems (1965).Google Scholar
    51. Tizian Zeltner, Iliyan Georgiev, and Wenzel Jakob. 2020. Specular Manifold Sampling for Rendering High-Frequency Caustics and Glints. Transactions on Graphics (Proceedings of SIGGRAPH) 39, 4 (July 2020).Google Scholar
    52. Tizian Zeltner, Sébastien Speierer, Iliyan Georgiev, and Wenzel Jakob. 2021. Monte Carlo Estimators for Differential Light Transport. Transactions on Graphics (Proceedings of SIGGRAPH) 40, 4 (Aug. 2021).Google ScholarDigital Library
    53. Cheng Zhang, Bailey Miller, Kai Yan, Ioannis Gkioulekas, and Shuang Zhao. 2020. Path-Space Differentiable Rendering. ACM Trans. Graph. (Proc. SIGGRAPH) 39, 4, Article 143 (July 2020), 19 pages.Google ScholarDigital Library
    54. Cheng Zhang, Lifan Wu, Changxi Zheng, Ioannis Gkioulekas, Ravi Ramamoorthi, and Shuang Zhao. 2019. A Differential Theory of Radiative Transfer. ACM Trans. Graph. (Proc. SIGGRAPH Asia) 38, 6, Article 227 (Nov. 2019), 16 pages.Google Scholar
    55. Shaung Zhao, Lifan Wu, Frédo Durand, and Ravi Ramamoorthi. 2016. Downsampling Scattering Parameters for Rendering Anisotropic Media. ACM Transactions on Graphics 35, 6 (2016).Google ScholarDigital Library

ACM Digital Library Publication:

Overview Page: