“PATEX: exploring pattern variations” by Guerrero, Bernstein, Li and Mitra

  • ©Paul Guerrero, Gilbert Bernstein, Wilmot Li, and Niloy J. Mitra




    PATEX: exploring pattern variations





    Patterns play a central role in 2D graphic design. A critical step in the design of patterns is evaluating multiple design alternatives. Exploring these alternatives with existing tools is challenging because most tools force users to work with a single fixed representation of the pattern that encodes a specific set of geometric relationships between pattern elements. However, for most patterns, there are many different interpretations of its regularity that correspond to different design variations. The exponential nature of this variation space makes the problem of finding all variations intractable. We present a method called PATEX to characterize and efficiently identify distinct and valid pattern variations, allowing users to directly navigate the variation space. Technically, we propose a novel linear approximation to handle the complexity of the problem and efficiently enumerate suitable pattern variations under proposed element movements. We also present two pattern editing interfaces that expose the detected pattern variations as suggested edits to the user. We show a diverse collection of pattern edits and variations created with PATEX. The results from our user study indicate that our suggested variations can be useful and inspirational for typical pattern editing tasks.


    1. Alhashim, I., Li, H., Xu, K., Cao, J., Ma, R., and Zhang, H. 2014. Topology-varying 3d shape creation via structural blending. ACM TOG 33, 4 (July), 158:1–158:10. Google ScholarDigital Library
    2. Baudisch, P., Cutrell, E., Hinckley, K., and Eversole, A. 2005. Snap-and-go: Helping users align objects without the modality of traditional snapping. In CHI, 301–310. Google ScholarDigital Library
    3. Bernstein, G. L., and Li, W. 2015. Lillicon: Using transient widgets to create scale variations of icons. ACM TOG 34, 4 (July), 144:1–144:11. Google ScholarDigital Library
    4. Bier, E. A., and Stone, M. C. 1986. Snap-dragging. In ACM SIGGRAPH, 233–240. Google ScholarDigital Library
    5. Bokeloh, M., Wand, M., Seidel, H.-P., and Koltun, V. 2012. An algebraic model for parameterized shape editing. ACM SIGGRAPH 31, 4, 78:1–78:10. Google ScholarDigital Library
    6. Branch, M. A., Coleman, T. F., and Li, Y. 1999. A subspace, interior, and conjugate gradient method for large-scale bound-constrained minimization problems. SIAM J. Sci. Comput. 21, 1 (Aug.), 1–23. Google ScholarDigital Library
    7. Chen, X., and Hoffmann, C. M. 1995. Design compilation of feature-based and constraint-based cad. In Solid Modeling and Applications, 13–19. Google ScholarDigital Library
    8. Daniel, M., and Lucas, M. 1997. Towards declarative geometric modelling in mechanics. In Integrated Design and Manufacturing in Mechanical Engineering, P. Chedmail, J.-C. Bocquet, and D. Dornfeld, Eds. Springer Netherlands, 427–436.Google Scholar
    9. Denning, J. D., Kerr, W. B., and Pellacini, F. 2011. Mesh-flow: Interactive visualization of mesh construction sequences. ACM TOG 30, 4 (July), 66:1–66:8. Google ScholarDigital Library
    10. Doboš, J., Mitra, N. J., and Steed, A. 2014. 3d timeline: Reverse engineering of a part-based provenance from consecutive 3d models. CGF 33, 2 (May), 135–144. Google ScholarDigital Library
    11. Fish, N., Averkiou, M., van Kaick, O., Sorkine-Hornung, O., Cohen-Or, D., and Mitra, N. J. 2014. Meta-representation of shape families. ACM TOG 33, 4 (July), 34:1–34:11. Google ScholarDigital Library
    12. Gal, R., Sorkine, O., Mitra, N. J., and Cohen-Or, D. 2009. iwires: An analyze-and-edit approach to shape manipulation. ACM SIGGRAPH 28, 3, #33, 1–10. Google ScholarDigital Library
    13. Gleicher, M., and Witkin, A. 1991. Differential manipulation. In Graphics Interface, 61–67.Google Scholar
    14. Gleicher, M. 1992. Briar: A constraint-based drawing program. In CHI, 661–662. Google ScholarDigital Library
    15. Guerrero, P., Jeschke, S., Wimmer, M., and Wonka, P. 2014. Edit propagation using geometric relationship functions. ACM TOG 33, 2 (Apr.), 15:1–15:15. Google ScholarDigital Library
    16. Harada, M., Witkin, A., and Baraff, D. 1995. Interactive physically-based manipulation of discrete/continuous models. In ACM SIGGRAPH, ACM, New York, NY, USA, 199–208. Google ScholarDigital Library
    17. Huang, Q.-x., Mech, R., and Carr, N. 2009. Optimizing structure preserving embedded deformation for resizing images and vector art. CGF 28, 7, 1887–1896.Google ScholarCross Ref
    18. Igarashi, T., Matsuoka, S., Kawachiya, S., and Tanaka, H. 1997. Interactive beautification: A technique for rapid geometric design. In UIST, 105–114. Google ScholarDigital Library
    19. Jacobs, C., Li, W., Schrier, E., Bargeron, D., and Salesin, D. 2003. Adaptive grid-based document layout. ACM TOG 22, 3 (July), 838–847. Google ScholarDigital Library
    20. Nan, L., Sharf, A., Xie, K., Wong, T.-T., Deussen, O., Cohen-Or, D., and Chen, B. 2011. Conjoining gestalt rules for abstraction of architectural drawings. ACM SIGGRAPH 30, 6. 185:1–185:10. Google ScholarDigital Library
    21. Nelson, G. 1985. Juno, a constraint-based graphics system. In ACM SIGGRAPH, 235–243. Google ScholarDigital Library
    22. O’Donovan, P., Agarwala, A., and Hertzmann, A. 2014. Learning Layouts for Single-Page Graphic Designs. IEEE TVCG 20, 8, 1200–1213. Google ScholarDigital Library
    23. 2016. PATEX project website. http://geometry.cs.ucl.ac.uk/projects/2016/pattern-variations/. Accessed: 2016-19-04.Google Scholar
    24. Pavlidis, T., and Van Wyk, C. J. 1985. An automatic beautifier for drawings and illustrations. ACM SIGGRAPH 19, 3, 225–234. Google ScholarDigital Library
    25. Reinert, B., Ritschel, T., and Seidel, H.-P. 2013. Interactive by-example design of artistic packing layouts. ACM SIGGRAPH Asia 31, 6. Google ScholarDigital Library
    26. Ryall, K., Marks, J., and Shieber, S. 1997. An interactive constraint-based system for drawing graphs. In UIST, 97–104. Google ScholarDigital Library
    27. Talton, J. O., Gibson, D., Yang, L., Hanrahan, P., and Koltun, V. 2009. Exploratory modeling with collaborative design spaces. ACM SIGGRAPH Asia 28, 5, 167:1–167:10. Google ScholarDigital Library
    28. Tsandilas, T., Grammatikou, M., and Huot, S. 2015. Bricosketch: Mixing paper and computer drawing tools in professional illustration. In Proc. International Conference on Interactive Tabletops & Surfaces, 127–136. Google ScholarDigital Library
    29. Št’ava, O., Bene, B., Mch, R., Aliaga, D. G., and Kritof, P. 2010. Inverse procedural modeling by automatic generation of l-systems. CGF 29, 2, 665–674.Google ScholarCross Ref
    30. Wang, Y., Xu, K., Li, J., Zhang, H., Shamir, A., Liu, L., Cheng, Z., and Xiong, Y. 2011. Symmetry hierarchy of man-made objects. CGF 30, 2, 287–296.Google ScholarCross Ref
    31. Xu, W., Wang, J., Yin, K., Zhou, K., van de Panne, M., Chen, F., and Guo, B. 2009. Joint-aware manipulation of deformable models. In ACM SIGGRAPH, 35:1–35:9. Google ScholarDigital Library
    32. Xu, P., Fu, H., Igarashi, T., and Tai, C.-L. 2014. Global beautification of layouts with interactive ambiguity resolution. In UIST. Google ScholarDigital Library
    33. Xu, P., Fu, H., Tai, C.-L., and Igarashi, T. 2015. Gaca: Group-aware command-based arrangement of graphic elements. In Proceedings of the 33rd Annual ACM Conference on Human Factors in Computing Systems, ACM, New York, NY, USA, CHI ’15, 2787–2795. Google ScholarDigital Library
    34. Yeh, Y.-T., and Mech, R. 2009. Detecting symmetries and curvilinear arrangements in vector art. CGF 28, 2, 707–716.Google ScholarCross Ref
    35. Yeh, Y.-T., Yang, L., Watson, M., Goodman, N. D., and Hanrahan, P. 2012. Synthesizing open worlds with constraints using locally annealed reversible jump mcmc. ACM SIGGRAPH 31, 4, 56:1–56:11. Google ScholarDigital Library
    36. Yeh, Y.-T., Breeden, K., Yang, L., Fisher, M., and Hanrahan, P. 2013. Synthesis of tiled patterns using factor graphs. ACM TOG 32, 1, 3:1–3:13. Google ScholarDigital Library
    37. Yvars, P.-A. 2008. Using constraint satisfaction for designing mechanical systems. International Journal on Interactive Design and Manufacturing (IJIDeM) 2, 3, 161–167.Google ScholarCross Ref
    38. Zheng, Y., Chen, X., Cheng, M.-M., Zhou, K., Hu, S.-M., and Mitra, N. J. 2012. Interactive images: Cuboid proxies for smart image manipulation. ACM SIGGRAPH 31, 4, 99:1–99:11. Google ScholarDigital Library

ACM Digital Library Publication: