“Pareto gamuts: exploring optimal designs across varying contexts” by Makatura, Guo, Schulz, Solomon and Matusik

  • ©Liane Makatura, Minghao Guo, Adriana Schulz, Justin Solomon, and Wojciech Matusik




    Pareto gamuts: exploring optimal designs across varying contexts



    Manufactured parts are meticulously engineered to perform well with respect to several conflicting metrics, like weight, stress, and cost. The best achievable trade-offs reside on the Pareto front, which can be discovered via performance-driven optimization. The objectives that define this Pareto front often incorporate assumptions about the context in which a part will be used, including loading conditions, environmental influences, material properties, or regions that must be preserved to interface with a surrounding assembly. Existing multi-objective optimization tools are only equipped to study one context at a time, so engineers must run independent optimizations for each context of interest. However, engineered parts frequently appear in many contexts: wind turbines must perform well in many wind speeds, and a bracket might be optimized several times with its bolt-holes fixed in different locations on each run. In this paper, we formulate a framework for variable-context multi-objective optimization. We introduce the Pareto gamut, which captures Pareto fronts over a range of contexts. We develop a global/local optimization algorithm to discover the Pareto gamut directly, rather than discovering a single fixed-context “slice” at a time. To validate our method, we adapt existing multi-objective optimization benchmarks to contextual scenarios. We also demonstrate the practical utility of Pareto gamut exploration for several engineering design problems.


    1. Johannes Bader and Eckart Zitzler. 2011. HypE: An Algorithm for Fast Hypervolume-Based Many-Objective Optimization. Evolutionary Computation 19, 1 (2011), 45–76. Google ScholarDigital Library
    2. Tyler Benedict. 2018. Suspension Tech: What is Anti-Squat? https://bikerumor.com/2018/09/13/suspension-tech-what-is-anti-squat/Google Scholar
    3. Gaurav Bharaj, David I. W. Levin, James Tompkin, Yun Fei, Hanspeter Pfister, Wojciech Matusik, and Changxi Zheng. 2015. Computational Design of Metallophone Contact Sounds. ACM Trans. Graph. 34, 6, Article 223 (Oct. 2015), 13 pages. Google ScholarDigital Library
    4. Bernd Bickel, Moritz Bächer, Miguel A. Otaduy, Hyunho Richard Lee, Hanspeter Pfister, Markus Gross, and Wojciech Matusik. 2010. Design and Fabrication of Materials with Desired Deformation Behavior. ACM Transactions on Graphics 29, 4, Article 63 (July 2010), 10 pages.Google ScholarDigital Library
    5. Julian Blank and Kalyanmoy Deb. 2020. pymoo: Multi-objective Optimization in Python. arXiv:cs.NE/2002.04504Google Scholar
    6. Michael Bogomonly. 2019. Partner Spotlight: Using Generative Design With Onshape and ParaMatters. https://www.onshape.com/cad-blog/partner-spotlight-using-generative-design-with-onshape-and-paramattersGoogle Scholar
    7. Xiang Chen, Changxi Zheng, Weiwei Xu, and Kun Zhou. 2014. An Asymptotic Numerical Method for Inverse Elastic Shape Design. ACM Trans. Graph. 33, 4, Article 95 (July 2014), 11 pages. Google ScholarDigital Library
    8. Jin-Hee Cho, Yating Wang, Ing-Ray Chen, Kevin S. Chan, and Ananthram Swami. 2017. A Survey on Modeling and Optimizing Multi-Objective Systems. IEEE Communications Surveys & Tutorials 19, 3 (2017), 1867–1901. Google ScholarDigital Library
    9. Derek Covill, Steven Begg, Eddy Elton, Mark Milne, Richard Morris, and Tim Katz. 2014. Parametric Finite Element Analysis of Bicycle Frame Geometries. Procedia Engineering 72 (2014), 441 — 446. The Engineering of Sport 10. Google ScholarCross Ref
    10. Indraneel Das and J. E. Dennis. 1998. Normal-Boundary Intersection: A New Method for Generating the Pareto Surface in Nonlinear Multicriteria Optimization Problems. SIAM Journal on Optimization 8, 3 (1998), 631–657.Google ScholarDigital Library
    11. Kalyanmoy Deb and Himanshu Jain. 2014. An Evolutionary Many-Objective Optimization Algorithm Using Reference-Point-Based Nondominated Sorting Approach, Part 1: Solving Problems With Box Constraints. IEEE Transactions on Evolutionary Computation 18, 4 (Aug. 2014), 577–601. Google ScholarCross Ref
    12. K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan. 2002. A Fast and Elitist Multiobjective Genetic Algorithm: NSGA-II. Trans. Evol. Comp 6, 2 (April 2002), 182–197.Google ScholarDigital Library
    13. Yue Dong, Jiaping Wang, Fabio Pellacini, Xin Tong, and Baining Guo. 2010. Fabricating Spatially-varying Subsurface Scattering. ACM Transactions on Graphics 29, 4, Article 62 (July 2010), 10 pages.Google ScholarDigital Library
    14. Tao Du, Adriana Schulz, Bo Zhu, Bernd Bickel, and Wojciech Matusik. 2016. Computational Multicopter Design. ACM Trans. Graph. 35, 6, Article 227 (Nov. 2016), 10 pages. Google ScholarDigital Library
    15. Matt Faulkner. 2014. Suspension Linkage Kinematics: The Basics of Anti-Squat and Pedal Kickback. https://www.ridingfeelsgood.com/suspension-linkage-kinematics-basics-anti-squat-pedal-kickback/Google Scholar
    16. Sehoon Ha, Stelian Coros, Alexander Alspach, Joohyung Kim, and Katsu Yamane. 2018. Computational co-optimization of design parameters and motion trajectories for robotic systems. The International Journal of Robotics Research 37, 13-14 (2018), 1521–1536. arXiv:https://doi.org/10.1177/0278364918771172 Google ScholarDigital Library
    17. Christian Hafner, Christian Schumacher, Espen Knoop, Thomas Auzinger, Bernd Bickel, and Moritz Bächer. 2019. X-CAD: Optimizing CAD Models with Extended Finite Elements. ACM Trans. Graph. 38, 6, Article 157 (Nov. 2019), 15 pages. Google ScholarDigital Library
    18. C. Hillermeier. 2001a. Generalized Homotopy Approach to Multiobjective Optimization. Journal of Optimization Theory and Applications 110, 3 (01 Sep 2001), 557–583.Google ScholarDigital Library
    19. Claus Hillermeier. 2001b. Nonlinear multiobjective optimization: a generalized homotopy approach. Vol. 135. Springer Science & Business Media.Google Scholar
    20. Gary Johnson. 2006. Wind Energy Systems (electronic edition). http://www.ece.k-state.edu/people/faculty/gjohnson/files/Windbook.pdf Original work published 1994.Google Scholar
    21. William Karush. 1939. Minima of Functions of Several Variables with Inequalities as Side Constraints. Master’s thesis. Dept. of Mathematics, University of Chicago, Chicago, Illinois.Google Scholar
    22. Yuki Koyama, Issei Sato, and Masataka Goto. 2020. Sequential Gallery for Interactive Visual Design Optimization. ACM Trans. Graph. 39, 4, Article 88 (July 2020), 12 pages. Google ScholarDigital Library
    23. H. W. Kuhn and A. W. Tucker. 1951. Nonlinear Programming. In Proceedings of the Second Berkeley Symposium on Mathematical Statistics and Probability. University of California Press, Berkeley, Calif., 481–492. https://projecteuclid.org/euclid.bsmsp/1200500249Google Scholar
    24. Joonho Lee, Jemin Hwangbo, Lorenz Wellhausen, Vladlen Koltun, and Marco Hutter. 2020. Learning quadrupedal locomotion over challenging terrain. Science Robotics 5, 47 (2020). arXiv:https://robotics.sciencemag.org/content/5/47/eabc5986.full.pdf Google ScholarCross Ref
    25. Dingzeyu Li, David I.W. Levin, Wojciech Matusik, and Changxi Zheng. 2016. Acoustic Voxels: Computational Optimization of Modular Acoustic Filters. ACM Trans. Graph. 35, 4 (2016). Google ScholarDigital Library
    26. Pingchuan Ma, Tao Du, and Wojciech Matusik. 2020. Efficient Continuous Pareto Exploration in Multi-Task Learning. In Proceedings of the 37th International Conference on Machine Learning.Google ScholarDigital Library
    27. R. T. Marler and J. S. Arora. 2004. Survey of multi-objective optimization methods for engineering. Structural and Multidisciplinary Optimization 26, 6 (01 Apr 2004), 369–395. Google ScholarCross Ref
    28. Adanay Martín and Oliver Schütze. 2018. Pareto Tracer: a predictor-corrector method for multi-objective optimization problems. Engineering Optimization 50, 3 (2018), 516–536.Google ScholarCross Ref
    29. David Meignan, Sigrid Knust, Jean-Marc Frayret, Gilles Pesant, and Nicolas Gaud. 2015. A Review and Taxonomy of Interactive Optimization Methods in Operations Research. ACM Trans. Interact. Intell. Syst. 5, 3, Article Article 17 (Sept. 2015), 43 pages. Google ScholarDigital Library
    30. A. Messac, A. Ismail-Yahaya, and C.A. Mattson. 2003. The normalized normal constraint method for generating the Pareto frontier. Structural and Multidisciplinary Optimization 25, 2 (01 Jul 2003), 86–98.Google Scholar
    31. Julian Panetta, Abtin Rahimian, and Denis Zorin. 2017. Worst-case Stress Relief for Microstructures. ACM Trans. Graph. 36, 4, Article 122 (July 2017), 16 pages. Google ScholarDigital Library
    32. PHeller. 2014. Horst-Link Pivot Placement and Pedaling Efficiency (Norco ART). https://www.pinkbike.com/u/PHeller/blog/horst-link-pivot-placement-and-pedaling-efficiency-norco-art.htmlGoogle Scholar
    33. Romain Prévost, Emily Whiting, Sylvain Lefebvre, and Olga Sorkine-Hornung. 2013. Make It Stand: Balancing Shapes for 3D Fabrication. ACM Trans. Graph. 32, 4, Article 81 (July 2013), 10 pages. Google ScholarDigital Library
    34. J. Rakowska, R.T. Haftka, and L.T. Watson. 1991. Tracing the efficient curve for multi-objective control-structure optimization. Computing Systems in Engineering 2, 5 (1991), 461 — 471. Computational Structures Technology 3- Part 2. Google ScholarCross Ref
    35. Dan Roberts. 2020. Enginerding: What Is Anti-Squat & How Does It Actually Affect Mountain Bike Performance? https://www.pinkbike.com/news/definitions-what-is-anti-squat.htmlGoogle Scholar
    36. Ana B. Ruiz, Francisco Ruiz, Kaisa Miettinen, Laura Delgado-Antequera, and Vesa Ojalehto. 2019. NAUTILUS Navigator: free search interactive multiobjective optimization without trading-off. Journal of Global Optimization 74, 2 (01 Jun 2019), 213–231. Google ScholarDigital Library
    37. Adriana Schulz, Harrison Wang, Eitan Grinspun, Justin Solomon, and Wojciech Matusik. 2018. Interactive Exploration of Design Trade-offs. ACM Trans. Graph. 37, 4, Article 131 (July 2018), 14 pages. Google ScholarDigital Library
    38. Adriana Schulz, Jie Xu, Bo Zhu, Changxi Zheng, Eitan Grinspun, and Wojciech Matusik. 2017. Interactive Design Space Exploration and Optimization for CAD Models. ACM Transactions on Graphics 36, 4 (jul 2017).Google ScholarDigital Library
    39. Christian Schumacher, Jonas Zehnder, and Moritz Bächer. 2018. Set-in-Stone: Worst-Case Optimization of Structures Weak in Tension. ACM Trans. Graph. 37, 6, Article 252 (Dec. 2018), 13 pages. Google ScholarDigital Library
    40. Oliver Schütze, Oliver Cuate, Adanay Martín, Sebastian Peitz, and Michael Dellnitz. 2019. Pareto Explorer: a global/local exploration tool for many-objective optimization problems. Engineering Optimization 0, 0 (2019), 1–24.Google Scholar
    41. Yuliy Schwartzburg, Romain Testuz, Andrea Tagliasacchi, and Mark Pauly. 2014. High-contrast Computational Caustic Design. ACM Trans. Graph. 33, 4, Article 74 (July 2014), 11 pages. Google ScholarDigital Library
    42. Seven Cycles. 2020. Seven Design Philosophy – Understanding Chainstays. https://www.sevencycles.com/chainstay-philosophy.phpGoogle Scholar
    43. Maria Shugrina, Ariel Shamir, and Wojciech Matusik. 2015. Fab Forms: Customizable Objects for Fabrication with Validity and Geometry Caching. ACM Trans. Graph.Google ScholarDigital Library
    44. 34, 4, Article Article 100 (July 2015), 12 pages. Google ScholarDigital Library
    45. A. Spielberg, B. Araki, C. Sung, R. Tedrake, and D. Rus. 2017. Functional co-optimization of articulated robots. In 2017 IEEE International Conference on Robotics and Automation (ICRA). 5035–5042.Google Scholar
    46. Ed Spratt. 2019. The Tech Behind the New Atherton Bikes. https://www.pinkbike.com/news/the-tech-behind-the-new-atherton-bikes.htmlGoogle Scholar
    47. Russ Tedrake. 2020. Underactuated Robotics: Algorithms for Walking, Running, Swimming, Flying, and Manipulation (Course Notes for MIT 6.832). Downloaded on May 19, 2020 from http://underactuated.mit.edu/.Google Scholar
    48. Erva Ulu, James Mccann, and Levent Burak Kara. 2017. Lightweight Structure Design under Force Location Uncertainty. ACM Trans. Graph. 36, 4, Article 158 (July 2017), 13 pages. Google ScholarDigital Library
    49. Nobuyuki Umetani, Takeo Igarashi, and Niloy J. Mitra. 2012. Guided Exploration of Physically Valid Shapes for Furniture Design. ACM Trans. Graph. 31, 4, Article 86 (July 2012), 11 pages. Google ScholarDigital Library
    50. Nobuyuki Umetani, Yuki Koyama, Ryan Schmidt, and Takeo Igarashi. 2014. Pteromys: Interactive Design and Optimization of Free-formed Free-flight Model Airplanes. ACM Trans. Graph. 33, 4, Article 65 (July 2014), 10 pages. Google ScholarDigital Library
    51. David A. Van Veldhuizen and Gary B. Lamont. 2000. Multiobjective Evolutionary Algorithms: Analyzing the State-of-the-Art. Evol. Comput. 8, 2 (June 2000), 125–147. Google ScholarDigital Library
    52. Lingfeng Wang and Emily Whiting. 2016. Buoyancy Optimization for Computational Fabrication. Computer Graphics Forum (Proceedings of Eurographics) 35, 2 (2016).Google Scholar
    53. Shawn Wasserman. 2017. Topology Optimization Comes to SOLIDWORKS. https://www.engineersrule.com/topology-optimization-comes-solidworks/Google Scholar
    54. Jiaxian Yao, Danny M. Kaufman, Yotam Gingold, and Maneesh Agrawala. 2017. Interactive Design and Stability Analysis of Decorative Joinery for Furniture. ACM Trans. Graph. 36, 2, Article 20 (March 2017), 16 pages. Google ScholarDigital Library
    55. J. Zhang and L. Xing. 2017. A Survey of Multiobjective Evolutionary Algorithms. In 2017 IEEE International Conference on Computational Science and Engineering (CSE) and IEEE International Conference on Embedded and Ubiquitous Computing (EUC), Vol. 1. 93–100.Google Scholar
    56. Allan Zhao, Jie Xu, Mina Konaković-Luković, Josephine Hughes, Andrew Spielberg, Daniela Rus, and Wojciech Matusik. 2020. RoboGrammar: Graph Grammar for Terrain-Optimized Robot Design. ACM Trans. Graph. 39, 6, Article 188 (Nov. 2020), 16 pages. Google ScholarDigital Library
    57. Qingnan Zhou, Julian Panetta, and Denis Zorin. 2013. Worst-Case Structural Analysis. ACM Trans. Graph. 32, 4, Article 137 (July 2013), 12 pages. Google ScholarDigital Library
    58. Bo Zhu, Mélina Skouras, Desai Chen, and Wojciech Matusik. 2017. Two-Scale Topology Optimization with Microstructures. ACM Transactions on Graphics 36, 5, Article 164 (July 2017), 16 pages.Google ScholarDigital Library
    59. Eckart Zitzler, Kalyanmoy Deb, and Lothar Thiele. 2000. Comparison of Multiobjective Evolutionary Algorithms: Empirical Results. Evol. Comput. 8, 2 (June 2000), 173–195. Google ScholarDigital Library

ACM Digital Library Publication: