“Optimizing color consistency in photo collections” by HaCohen, Shechtman, Goldman and Lischinski

  • ©Yoav HaCohen, Eli Shechtman, Daniel (Dan) B. Goldman, and Daniel (Dani) Lischinski




    Optimizing color consistency in photo collections

Session/Category Title:   Color & Compositing




    With dozens or even hundreds of photos in today’s digital photo albums, editing an entire album can be a daunting task. Existing automatic tools operate on individual photos without ensuring consistency of appearance between photographs that share content. In this paper, we present a new method for consistent editing of photo collections. Our method automatically enforces consistent appearance of images that share content without any user input. When the user does make changes to selected images, these changes automatically propagate to other images in the collection, while still maintaining as much consistency as possible. This makes it possible to interactively adjust an entire photo album in a consistent manner by manipulating only a few images.Our method operates by efficiently constructing a graph with edges linking photo pairs that share content. Consistent appearance of connected photos is achieved by globally optimizing a quadratic cost function over the entire graph, treating user-specified edits as constraints in the optimization. The optimization is fast enough to provide interactive visual feedback to the user. We demonstrate the usefulness of our approach using a number of personal and professional photo collections, as well as internet collections.


    1. Agarwal, S., Snavely, N., Simon, I., Seitz, S. M., and Szeliski, R. 2009. Building Rome in a day. In Proc. IEEE ICCV.Google Scholar
    2. An, X., and Pellacini, F. 2010. User-controllable color transfer. Computer Graphics Forum 29, 2, 263–271.Google ScholarCross Ref
    3. Barnes, C., Shechtman, E., Finkelstein, A., and Goldman, D. B. 2009. PatchMatch: a randomized correspondence algorithm for structural image editing. ACM Trans. Graph. 28, 3. Google ScholarDigital Library
    4. Barnes, C. 2011. PatchMatch: A Fast Randomized Matching Algorithm with Application to Image and Video. PhD thesis, Princeton University. Google ScholarDigital Library
    5. Bychkovsky, V., Paris, S., Chan, E., and Durand, F. 2011. Learning photographic global tonal adjustment with a database of input/output image pairs. In Proc. IEEE CVPR. Google ScholarDigital Library
    6. Caicedo, J. C., Kapoor, A., and Kang, S. B. 2011. Collaborative personalization of image enhancement. In Proc. IEEE CVPR. Google ScholarDigital Library
    7. Dale, K., Johnson, M. K., Sunkavalli, K., Matusik, W., and Pfister, H. 2009. Image restoration using online photo collections. In Proc. IEEE ICCV.Google Scholar
    8. Faktor, A., and Irani, M. 2012. “Clustering by Composition” – unsupervised discovery of image categories. In Proc. ECCV (7), 474–487. Google ScholarDigital Library
    9. Farbman, Z., and Lischinski, D. 2011. Tonal stabilization of video. ACM Trans. Graph. 30, 4, 89:1–89:9. Google ScholarDigital Library
    10. Frahm, J.-M., Georgel, P. F., Gallup, D., Johnson, T., Raguram, R., Wu, C., Jen, Y.-H., Dunn, E., Clipp, B., and Lazebnik, S. 2010. Building Rome on a cloudless day. In Proc. ECCV (4), vol. 6314, 368–381. Google ScholarDigital Library
    11. Gould, S., and Zhang, Y. 2012. PATCHMATCHGRAPH: building a graph of dense patch correspondences for label transfer. In Proc. ECCV, vol. Part V, 439–452. Google ScholarDigital Library
    12. HaCohen, Y., Shechtman, E., Goldman, D. B., and Lischinski, D. 2011. Non-rigid dense correspondence with applications for image enhancement. ACM Trans. Graph. 30, 4, 70:1–70:9. Google ScholarDigital Library
    13. Hasinoff, S. W., Jóźwiak, M., Durand, F., and Freeman, W. T. 2010. Search-and-replace editing for personal photo collections. In Proc. ICCP.Google Scholar
    14. Joshi, N., Matusik, W., Adelson, E. H., and Kriegman, D. J. 2010. Personal photo enhancement using example images. ACM Trans. Graph. 29, 2 (April), 12:1–12:15. Google ScholarDigital Library
    15. Kagarlitsky, S., Moses, Y., and Hel Or, Y. 2009. Piecewise-consistent color mappings of images acquired under various conditions. In Proc. ICCV, 2311–2318.Google ScholarCross Ref
    16. Kang, S. B., Kapoor, A., and Lischinski, D. 2010. Personalization of image enhancement. In Proc. IEEE CVPR.Google Scholar
    17. Kim, K. I., Tompkin, J., Theobald, M., Kautz, J., and Theobalt, C. 2012. Match graph construction for large image databases. In Proc. ECCV. Google ScholarDigital Library
    18. Laffont, P.-Y., Bousseau, A., Paris, S., Durand, F., and Drettakis, G. 2012. Coherent intrinsic images from photo collections. ACM Trans. Graph. 31, 6, 202:1–11. Google ScholarDigital Library
    19. Levin, A., Lischinski, D., and Weiss, Y. 2004. Colorization using optimization. ACM Trans. Graph. 23, 3, 689–694. Google ScholarDigital Library
    20. Lowe, D. G. 2004. Distinctive image features from scale-invariant keypoints. Int. J. Comput. Vision 60, 2, 91–110. Google ScholarDigital Library
    21. Oskam, T., Hornung, A., Sumner, R. W., and Gross, M. H. 2012. Fast and stable color balancing for images and augmented reality. In 3DIMPVT, IEEE, 49–56. Google ScholarDigital Library
    22. Pitié, F., Kokaram, A. C., and Dahyot, R. 2007. Automated colour grading using colour distribution transfer. Comput. Vis. Image Underst. 107 (July), 123–137. Google ScholarDigital Library
    23. Reinhard, E., Ashikhmin, M., Gooch, B., and Shirley, P. 2001. Color transfer between images. IEEE Comput. Graph. Appl. (September). Google ScholarDigital Library
    24. Sivic, J., and Zisserman, A. 2003. Video Google: A text retrieval approach to object matching in videos. In Proc. IEEE ICCV, 1470. Google ScholarDigital Library
    25. Snavely, N., Seitz, S. M., and Szeliski, R. 2006. Photo tourism: exploring photo collections in 3D. ACM Trans. Graph. 25 (July), 835–846. Google ScholarDigital Library
    26. Snavely, N., Garg, R., Seitz, S. M., and Szeliski, R. 2008. Finding paths through the world’s photos. ACM Trans. Graph. 27, 3, 11–21. Google ScholarDigital Library
    27. van de Weijer, J., Gevers, T., and Gijsenij, A. 2007. Edge-based color constancy. IEEE Trans. Im. Proc. 16, 9, 2207–2214. Google ScholarDigital Library
    28. Yücer, K., Jacobson, A., Hornung, A., and Sorkine, O. 2012. Transfusive image manipulation. ACM Trans. Graph. 31, 6, 176:1–176:9. Google ScholarDigital Library

ACM Digital Library Publication:

Overview Page: