“OmniAD: data-driven omni-directional aerodynamics” by Martin, Umetani and Bickel

  • ©Tobias Martin, Nobuyuki Umetani, and Bernd Bickel

Conference:


Type:


Title:

    OmniAD: data-driven omni-directional aerodynamics

Presenter(s)/Author(s):



Abstract:


    This paper introduces “OmniAD,” a novel data-driven pipeline to model and acquire the aerodynamics of three-dimensional rigid objects. Traditionally, aerodynamics are examined through elaborate wind tunnel experiments or expensive fluid dynamics computations, and are only measured for a small number of discrete wind directions. OmniAD allows the evaluation of aerodynamic forces, such as drag and lift, for any incoming wind direction using a novel representation based on spherical harmonics. Our data-driven technique acquires the aerodynamic properties of an object simply by capturing its falling motion using a single camera. Once model parameters are estimated, OmniAD enables realistic real-time simulation of rigid bodies, such as the tumbling and gliding of leaves, without simulating the surrounding air. In addition, we propose an intuitive user interface based on OmniAD to interactively design three-dimensional kites that actually fly. Various non-traditional kites were designed to demonstrate the physical validity of our model.

References:


    1. Abbott, I. H. 1959. Theory of Wing Sections: Including a Summary of Airfoil Data. Dover Publications.Google Scholar
    2. Andersen, A., Pesavento, U., and Wang, Z. J. 2005. Unsteady aerodynamics of fluttering and tumbling plates. Journal of Fluid Mechanics 541 (10), 65–90.Google ScholarCross Ref
    3. Bächer, M., Whiting, E., Bickel, B., and Sorkine-Hornung, O. 2014. Spin-it: Optimizing moment of inertia for spinnable objects. ACM Trans. Graph. (Proc. SIGGRAPH) 33, 4. Google ScholarDigital Library
    4. Batchelor, G. K. 2000. An Introduction to Fluid Dynamics (Cambridge Mathematical Library). Cambridge University Press, 2.Google ScholarCross Ref
    5. Batty, C., Bertails, F., and Bridson, R. 2007. A fast variational framework for accurate solid-fluid coupling. ACM Trans. Graph. (Proc. SIGGRAPH) 26, 3. Google ScholarDigital Library
    6. Bickel, B., Bächer, M., Otaduy, M. A., Matusik, W., Pfister, H., and Gross, M. 2009. Capture and modeling of non-linear heterogeneous soft tissue. ACM Trans. Graph. (Proc. SIGGRAPH) 28, 3. Google ScholarDigital Library
    7. Bickel, B., Bächer, M., Otaduy, M. A., Lee, H. R., Pfister, H., Gross, M., and Matusik, W. 2010. Design and fabrication of materials with desired deformation behavior.Google Scholar
    8. Bouguet, J. 2000. Matlab camera calibration toolbox.Google Scholar
    9. Carlson, M., Mucha, P. J., and Turk, G. 2004. Rigid fluid: Animating the interplay between rigid bodies and fluid. ACM Trans. Graph. (Proc. SIGGRAPH) 23, 3, 377–384. Google ScholarDigital Library
    10. Ceylan, D., Li, W., Mitra, N. J., Agrawala, M., and Pauly, M. 2013. Designing and fabricating mechanical automata from mocap sequences. ACM Trans. Graph. (Proc. SIGGRAPH Asia) 31, 6. Google ScholarDigital Library
    11. Chen, D., Levin, D. I. W., Didyk, P., Sitthi-Amorn, P., and Matusik, W. 2013. Spec2Fab: A reducer-tuner model for translating specifications to 3D prints. ACM Trans. Graph. (Proc. SIGGRAPH) 32, 4. Google ScholarDigital Library
    12. Chentanez, N., Goktekin, T. G., Feldman, B. E., and O’Brien, J. F. 2006. Simultaneous coupling of fluids and deformable bodies. In Proc. SCA, 83–89. Google ScholarDigital Library
    13. Cignoni, P., Pietroni, N., Malomo, L., and Scopigno, R. 2014. Field-aligned mesh joinery. ACM Trans. Graph. 33, 1. Google ScholarDigital Library
    14. Coros, S., Thomaszewski, B., Noris, G., Sueda, S., Forberg, M., Sumner, R. W., Matusik, W., and Bickel, B. 2013. Computational design of mechanical characters. ACM Trans. Graph. (Proc. SIGGRAPH) 32, 4. Google ScholarDigital Library
    15. Hildebrand, K., Bickel, B., and Alexa, M. 2012. crdbrd: Shape fabrication by sliding planar slices. Comput. Graphics Forum (Proc. Eurographics) 31, 2pt3, 583–592. Google ScholarDigital Library
    16. Hullin, M. B., Ihrke, I., Heidrich, W., Weyrich, T., Damberg, G., and Fuchs, M. 2013. Computational fabrication and display of material appearance. In Eurographics STARs.Google Scholar
    17. Ihmsen, M., Orthmann, J., Solenthaler, B., Kolb, A., and Teschner, M. 2014. Sph fluids in computer graphics. In Eurographics 2014 – State of the Art Reports.Google Scholar
    18. Ju, E., Won, J., Lee, J., Choi, B., Noh, J., and Choi, M. G. 2013. Data-driven control of flapping flight. ACM Trans. Graph. (Proc. SIGGRAPH) 32, 5. Google ScholarDigital Library
    19. Kazhdan, M., Funkhouser, T., and Rusinkiewicz, S. 2003. Rotation invariant spherical harmonic representation of 3D shape descriptors. In Proc. SGP, 156–164. Google ScholarDigital Library
    20. Klingner, B. M., Feldman, B. E., Chentanez, N., and O’Brien, J. F. 2006. Fluid animation with dynamic meshes. ACM Trans. Graph. (Proc. SIGGRAPH) 25, 3, 820–825. Google ScholarDigital Library
    21. Lu, L., Sharf, A., Zhao, H., Wei, Y., Fan, Q., Chen, X., Savoye, Y., Tu, C., Cohen-Or, D., and Chen, B. 2014. Build-to-Last: Strength to weight 3D printed objects. ACM Trans. Graph. (Proc. SIGGRAPH) 33, 4. Google ScholarDigital Library
    22. McCrae, J., Singh, K., and Mitra, N. J. 2011. Slices: A shape-proxy based on planar sections. ACM Trans. Graph. (Proc. SIGGRAPH Asia) 30, 6. Google ScholarDigital Library
    23. Miguel, E., Bradley, D., Thomaszewski, B., Bickel, B., Matusik, W., Otaduy, M. A., and Marschner, S. 2012. Data-driven estimation of cloth simulation models. Comput. Graphics Forum (Proc. Eurographics) 31, 2pt2, 519–528. Google ScholarDigital Library
    24. Miguel, E., Tamstorf, R., Bradley, D., Schvartzman, S. C., Thomaszewski, B., Bickel, B., Matusik, W., Marschner, S., and Otaduy, M. A. 2013. Modeling and estimation of internal friction in cloth. ACM Trans. Graph. (Proc. SIGGRAPH Asia) 32, 6. Google ScholarDigital Library
    25. Mori, Y., and Igarashi, T. 2007. Plushie: an interactive design system for plush toys. ACM Trans. Graph. (Proc. SIGGRAPH) 26, 3. Google ScholarDigital Library
    26. Otaduy, M. A., Bickel, B., Bradley, D., and Wang, H. 2012. Data-driven simulation methods in computer graphics: Cloth, tissue and faces. In ACM SIGGRAPH 2012 Courses, SIGGRAPH ’12, 12:1–12:96. Google ScholarDigital Library
    27. Pai, D. K., Doel, K. V. D., James, D. L., Lang, J., Lloyd, J. E., Richmond, J. L., and Yau, S. H. 2001. Scanning physical interaction behavior of 3D objects. SIGGRAPH ’01, 87–96. Google ScholarDigital Library
    28. Prévost, R., Whiting, E., Lefebvre, S., and Sorkine-Hornung, O. 2013. Make it stand: Balancing shapes for 3D fabrication. ACM Trans. Graph. (Proc. SIGGRAPH) 32, 4. Google ScholarDigital Library
    29. Ramamoorthi, R., and Hanrahan, P. 2002. Frequency space environment map rendering. Proc. of ACM SIGGRAPH ’02 21, 3, 517–526. Google ScholarDigital Library
    30. Robinson-Mosher, A., Shinar, T., Gretarsson, J., Su, J., and Fedkiw, R. 2008. Two-way coupling of fluids to rigid and deformable solids and shells. ACM Trans. Graph. (Proc. SIGGRAPH) 27, 3. Google ScholarDigital Library
    31. Saul, G., Lau, M., Mitani, J., and Igarashi, T. 2011. Sketchchair: An all-in-one chair design system for end users. In Proc. TEI, ACM, New York, NY, USA, TEI ’11, 73–80. Google ScholarDigital Library
    32. Schwartzburg, Y., and Pauly, M. 2013. Fabrication-aware design with intersecting planar pieces. Comput. Graphics Forum (Proc. Eurographics) 32, 2pt3, 317–326.Google Scholar
    33. Skouras, M., Thomaszewski, B., Kaufmann, P., Garg, A., Bickel, B., Grinspun, E., and Gross, M. 2014. Designing inflatable structures. ACM Trans. Graph. (Proc. SIGGRAPH) 33, 4. Google ScholarDigital Library
    34. Song, P., Fu, C.-W., Goswami, P., Zheng, J., Mitra, N. J., and Cohen-Or, D. 2013. Reciprocal frame structures made easy. ACM Trans. Graph. (Proc. SIGGRAPH) 32, 4. Google ScholarDigital Library
    35. Stam, J. 2009. Nucleus: Towards a unified dynamics solver for computer graphics. In IEEE International Conference on Computer-Aided Design and Computer Graphics, IEEE, 1–11.Google ScholarCross Ref
    36. Stava, O., Vanek, J., Benes, B., Carr, N., and Měch, R. 2012. Stress relief: improving structural strength of 3D printable objects. ACM Trans. Graph. (Proc. SIGGRAPH) 31, 4. Google ScholarDigital Library
    37. Taira, K., and Colonius, T. 2009. Three-dimensional flows around low-aspect-ratio flat-plate wings at low reynolds numbers. Journal of Fluid Mechanics 623 (3), 187–207.Google ScholarCross Ref
    38. Treuille, A., Lewis, A., and Popović, Z. 2006. Model reduction for real-time fluids. ACM Trans. Graph. (Proc. SIGGRAPH) 25, 3. Google ScholarDigital Library
    39. Umetani, N., Kaufman, D. M., Igarashi, T., and Grinspun, E. 2011. Sensitive couture for interactive garment modeling and editing. ACM Trans. Graph. (Proc. SIGGRAPH) 30, 4. Google ScholarDigital Library
    40. Umetani, N., Igarashi, T., and Mitra, N. J. 2012. Guided exploration of physically valid shapes for furniture design. ACM Trans. Graph. (Proc. SIGGRAPH) 31, 4. Google ScholarDigital Library
    41. Umetani, N., Koyama, Y., Schmidt, R., and Igarashi, T. 2014. Pteromys: Interactive design and optimization of free-formed free-flight model airplanes. ACM Trans. Graph. (Proc. SIGGRAPH) 33, 4. Google ScholarDigital Library
    42. Veen, H. V. 1996. The Tao of Kiteflying: The Dynamics of Tethered Flight, stated first printing ed. Kitelines Bookstore Llc, 3.Google Scholar
    43. Wang, Z. J., Birch, J. M., and Dickinson, M. H. 2004. Unsteady forces and flows in low reynolds number hovering flight: two-dimensional computations vs robotic wing experiments. Journal of Experimental Biology 207, 3, 449–460.Google ScholarCross Ref
    44. Wang, H., O’Brien, J. F., and Ramamoorthi, R. 2011. Data-driven elastic models for cloth: Modeling and measurement. ACM Trans. Graph. (Proc. SIGGRAPH) 30, 4. Google ScholarDigital Library
    45. Weissmann, S., and Pinkall, U. 2012. Underwater rigid body dynamics. ACM Trans. Graph. (Proc. SIGGRAPH) 31, 4. Google ScholarDigital Library
    46. Wejchert, J., and Haumann, D. 1991. Animation aerodynamics. Proc. of ACM SIGGRAPH ’91 25, 4, 19–22. Google ScholarDigital Library
    47. Welch, G., and Bishop, G. 2001. An introduction to the kalman filter. In SIGGRAPH 2001 Cours, 12–17.Google Scholar
    48. Wright, C. 1998. Kite Flight: Theory and Practice. Diane Pub Co, 4.Google Scholar
    49. Wu, J.-C., and Popović, Z. 2003. Realistic modeling of bird flight animations. ACM Trans. Graph. (Proc. SIGGRAPH) 22, 3. Google ScholarDigital Library
    50. Xie, H., and Miyata, K. 2013. Stochastic modeling of immersed rigid-body dynamics. In SIGGRAPH Asia 2013 Technical Briefs, 12:1–12:4. Google ScholarDigital Library
    51. Yuan, Z., Chen, F., and Zhao, Y. 2011. Stochastic modeling of light-weight floating objects. In Symposium on Interactive 3D Graphics and Games, I3D ’11, 213–213. Google ScholarDigital Library
    52. Zhong, H., Chen, S., and Lee, C. 2011. Experimental study of freely falling thin disks: Transition from planar zigzag to spiral. Physics of Fluids 23, 1.Google ScholarCross Ref
    53. Zhu, L., Xu, W., Snyder, J., Liu, Y., Wang, G., and Guo, B. 2012. Motion-guided mechanical toy modeling. ACM Trans. Graph. (Proc. SIGGRAPH Asia) 31, 6. Google ScholarDigital Library


ACM Digital Library Publication:



Overview Page: