“OmniAD: data-driven omni-directional aerodynamics” by Martin, Umetani and Bickel
Conference:
Type(s):
Title:
- OmniAD: data-driven omni-directional aerodynamics
Presenter(s)/Author(s):
Abstract:
This paper introduces “OmniAD,” a novel data-driven pipeline to model and acquire the aerodynamics of three-dimensional rigid objects. Traditionally, aerodynamics are examined through elaborate wind tunnel experiments or expensive fluid dynamics computations, and are only measured for a small number of discrete wind directions. OmniAD allows the evaluation of aerodynamic forces, such as drag and lift, for any incoming wind direction using a novel representation based on spherical harmonics. Our data-driven technique acquires the aerodynamic properties of an object simply by capturing its falling motion using a single camera. Once model parameters are estimated, OmniAD enables realistic real-time simulation of rigid bodies, such as the tumbling and gliding of leaves, without simulating the surrounding air. In addition, we propose an intuitive user interface based on OmniAD to interactively design three-dimensional kites that actually fly. Various non-traditional kites were designed to demonstrate the physical validity of our model.
References:
1. Abbott, I. H. 1959. Theory of Wing Sections: Including a Summary of Airfoil Data. Dover Publications.Google Scholar
2. Andersen, A., Pesavento, U., and Wang, Z. J. 2005. Unsteady aerodynamics of fluttering and tumbling plates. Journal of Fluid Mechanics 541 (10), 65–90.Google ScholarCross Ref
3. Bächer, M., Whiting, E., Bickel, B., and Sorkine-Hornung, O. 2014. Spin-it: Optimizing moment of inertia for spinnable objects. ACM Trans. Graph. (Proc. SIGGRAPH) 33, 4. Google ScholarDigital Library
4. Batchelor, G. K. 2000. An Introduction to Fluid Dynamics (Cambridge Mathematical Library). Cambridge University Press, 2.Google ScholarCross Ref
5. Batty, C., Bertails, F., and Bridson, R. 2007. A fast variational framework for accurate solid-fluid coupling. ACM Trans. Graph. (Proc. SIGGRAPH) 26, 3. Google ScholarDigital Library
6. Bickel, B., Bächer, M., Otaduy, M. A., Matusik, W., Pfister, H., and Gross, M. 2009. Capture and modeling of non-linear heterogeneous soft tissue. ACM Trans. Graph. (Proc. SIGGRAPH) 28, 3. Google ScholarDigital Library
7. Bickel, B., Bächer, M., Otaduy, M. A., Lee, H. R., Pfister, H., Gross, M., and Matusik, W. 2010. Design and fabrication of materials with desired deformation behavior.Google Scholar
8. Bouguet, J. 2000. Matlab camera calibration toolbox.Google Scholar
9. Carlson, M., Mucha, P. J., and Turk, G. 2004. Rigid fluid: Animating the interplay between rigid bodies and fluid. ACM Trans. Graph. (Proc. SIGGRAPH) 23, 3, 377–384. Google ScholarDigital Library
10. Ceylan, D., Li, W., Mitra, N. J., Agrawala, M., and Pauly, M. 2013. Designing and fabricating mechanical automata from mocap sequences. ACM Trans. Graph. (Proc. SIGGRAPH Asia) 31, 6. Google ScholarDigital Library
11. Chen, D., Levin, D. I. W., Didyk, P., Sitthi-Amorn, P., and Matusik, W. 2013. Spec2Fab: A reducer-tuner model for translating specifications to 3D prints. ACM Trans. Graph. (Proc. SIGGRAPH) 32, 4. Google ScholarDigital Library
12. Chentanez, N., Goktekin, T. G., Feldman, B. E., and O’Brien, J. F. 2006. Simultaneous coupling of fluids and deformable bodies. In Proc. SCA, 83–89. Google ScholarDigital Library
13. Cignoni, P., Pietroni, N., Malomo, L., and Scopigno, R. 2014. Field-aligned mesh joinery. ACM Trans. Graph. 33, 1. Google ScholarDigital Library
14. Coros, S., Thomaszewski, B., Noris, G., Sueda, S., Forberg, M., Sumner, R. W., Matusik, W., and Bickel, B. 2013. Computational design of mechanical characters. ACM Trans. Graph. (Proc. SIGGRAPH) 32, 4. Google ScholarDigital Library
15. Hildebrand, K., Bickel, B., and Alexa, M. 2012. crdbrd: Shape fabrication by sliding planar slices. Comput. Graphics Forum (Proc. Eurographics) 31, 2pt3, 583–592. Google ScholarDigital Library
16. Hullin, M. B., Ihrke, I., Heidrich, W., Weyrich, T., Damberg, G., and Fuchs, M. 2013. Computational fabrication and display of material appearance. In Eurographics STARs.Google Scholar
17. Ihmsen, M., Orthmann, J., Solenthaler, B., Kolb, A., and Teschner, M. 2014. Sph fluids in computer graphics. In Eurographics 2014 – State of the Art Reports.Google Scholar
18. Ju, E., Won, J., Lee, J., Choi, B., Noh, J., and Choi, M. G. 2013. Data-driven control of flapping flight. ACM Trans. Graph. (Proc. SIGGRAPH) 32, 5. Google ScholarDigital Library
19. Kazhdan, M., Funkhouser, T., and Rusinkiewicz, S. 2003. Rotation invariant spherical harmonic representation of 3D shape descriptors. In Proc. SGP, 156–164. Google ScholarDigital Library
20. Klingner, B. M., Feldman, B. E., Chentanez, N., and O’Brien, J. F. 2006. Fluid animation with dynamic meshes. ACM Trans. Graph. (Proc. SIGGRAPH) 25, 3, 820–825. Google ScholarDigital Library
21. Lu, L., Sharf, A., Zhao, H., Wei, Y., Fan, Q., Chen, X., Savoye, Y., Tu, C., Cohen-Or, D., and Chen, B. 2014. Build-to-Last: Strength to weight 3D printed objects. ACM Trans. Graph. (Proc. SIGGRAPH) 33, 4. Google ScholarDigital Library
22. McCrae, J., Singh, K., and Mitra, N. J. 2011. Slices: A shape-proxy based on planar sections. ACM Trans. Graph. (Proc. SIGGRAPH Asia) 30, 6. Google ScholarDigital Library
23. Miguel, E., Bradley, D., Thomaszewski, B., Bickel, B., Matusik, W., Otaduy, M. A., and Marschner, S. 2012. Data-driven estimation of cloth simulation models. Comput. Graphics Forum (Proc. Eurographics) 31, 2pt2, 519–528. Google ScholarDigital Library
24. Miguel, E., Tamstorf, R., Bradley, D., Schvartzman, S. C., Thomaszewski, B., Bickel, B., Matusik, W., Marschner, S., and Otaduy, M. A. 2013. Modeling and estimation of internal friction in cloth. ACM Trans. Graph. (Proc. SIGGRAPH Asia) 32, 6. Google ScholarDigital Library
25. Mori, Y., and Igarashi, T. 2007. Plushie: an interactive design system for plush toys. ACM Trans. Graph. (Proc. SIGGRAPH) 26, 3. Google ScholarDigital Library
26. Otaduy, M. A., Bickel, B., Bradley, D., and Wang, H. 2012. Data-driven simulation methods in computer graphics: Cloth, tissue and faces. In ACM SIGGRAPH 2012 Courses, SIGGRAPH ’12, 12:1–12:96. Google ScholarDigital Library
27. Pai, D. K., Doel, K. V. D., James, D. L., Lang, J., Lloyd, J. E., Richmond, J. L., and Yau, S. H. 2001. Scanning physical interaction behavior of 3D objects. SIGGRAPH ’01, 87–96. Google ScholarDigital Library
28. Prévost, R., Whiting, E., Lefebvre, S., and Sorkine-Hornung, O. 2013. Make it stand: Balancing shapes for 3D fabrication. ACM Trans. Graph. (Proc. SIGGRAPH) 32, 4. Google ScholarDigital Library
29. Ramamoorthi, R., and Hanrahan, P. 2002. Frequency space environment map rendering. Proc. of ACM SIGGRAPH ’02 21, 3, 517–526. Google ScholarDigital Library
30. Robinson-Mosher, A., Shinar, T., Gretarsson, J., Su, J., and Fedkiw, R. 2008. Two-way coupling of fluids to rigid and deformable solids and shells. ACM Trans. Graph. (Proc. SIGGRAPH) 27, 3. Google ScholarDigital Library
31. Saul, G., Lau, M., Mitani, J., and Igarashi, T. 2011. Sketchchair: An all-in-one chair design system for end users. In Proc. TEI, ACM, New York, NY, USA, TEI ’11, 73–80. Google ScholarDigital Library
32. Schwartzburg, Y., and Pauly, M. 2013. Fabrication-aware design with intersecting planar pieces. Comput. Graphics Forum (Proc. Eurographics) 32, 2pt3, 317–326.Google Scholar
33. Skouras, M., Thomaszewski, B., Kaufmann, P., Garg, A., Bickel, B., Grinspun, E., and Gross, M. 2014. Designing inflatable structures. ACM Trans. Graph. (Proc. SIGGRAPH) 33, 4. Google ScholarDigital Library
34. Song, P., Fu, C.-W., Goswami, P., Zheng, J., Mitra, N. J., and Cohen-Or, D. 2013. Reciprocal frame structures made easy. ACM Trans. Graph. (Proc. SIGGRAPH) 32, 4. Google ScholarDigital Library
35. Stam, J. 2009. Nucleus: Towards a unified dynamics solver for computer graphics. In IEEE International Conference on Computer-Aided Design and Computer Graphics, IEEE, 1–11.Google ScholarCross Ref
36. Stava, O., Vanek, J., Benes, B., Carr, N., and Měch, R. 2012. Stress relief: improving structural strength of 3D printable objects. ACM Trans. Graph. (Proc. SIGGRAPH) 31, 4. Google ScholarDigital Library
37. Taira, K., and Colonius, T. 2009. Three-dimensional flows around low-aspect-ratio flat-plate wings at low reynolds numbers. Journal of Fluid Mechanics 623 (3), 187–207.Google ScholarCross Ref
38. Treuille, A., Lewis, A., and Popović, Z. 2006. Model reduction for real-time fluids. ACM Trans. Graph. (Proc. SIGGRAPH) 25, 3. Google ScholarDigital Library
39. Umetani, N., Kaufman, D. M., Igarashi, T., and Grinspun, E. 2011. Sensitive couture for interactive garment modeling and editing. ACM Trans. Graph. (Proc. SIGGRAPH) 30, 4. Google ScholarDigital Library
40. Umetani, N., Igarashi, T., and Mitra, N. J. 2012. Guided exploration of physically valid shapes for furniture design. ACM Trans. Graph. (Proc. SIGGRAPH) 31, 4. Google ScholarDigital Library
41. Umetani, N., Koyama, Y., Schmidt, R., and Igarashi, T. 2014. Pteromys: Interactive design and optimization of free-formed free-flight model airplanes. ACM Trans. Graph. (Proc. SIGGRAPH) 33, 4. Google ScholarDigital Library
42. Veen, H. V. 1996. The Tao of Kiteflying: The Dynamics of Tethered Flight, stated first printing ed. Kitelines Bookstore Llc, 3.Google Scholar
43. Wang, Z. J., Birch, J. M., and Dickinson, M. H. 2004. Unsteady forces and flows in low reynolds number hovering flight: two-dimensional computations vs robotic wing experiments. Journal of Experimental Biology 207, 3, 449–460.Google ScholarCross Ref
44. Wang, H., O’Brien, J. F., and Ramamoorthi, R. 2011. Data-driven elastic models for cloth: Modeling and measurement. ACM Trans. Graph. (Proc. SIGGRAPH) 30, 4. Google ScholarDigital Library
45. Weissmann, S., and Pinkall, U. 2012. Underwater rigid body dynamics. ACM Trans. Graph. (Proc. SIGGRAPH) 31, 4. Google ScholarDigital Library
46. Wejchert, J., and Haumann, D. 1991. Animation aerodynamics. Proc. of ACM SIGGRAPH ’91 25, 4, 19–22. Google ScholarDigital Library
47. Welch, G., and Bishop, G. 2001. An introduction to the kalman filter. In SIGGRAPH 2001 Cours, 12–17.Google Scholar
48. Wright, C. 1998. Kite Flight: Theory and Practice. Diane Pub Co, 4.Google Scholar
49. Wu, J.-C., and Popović, Z. 2003. Realistic modeling of bird flight animations. ACM Trans. Graph. (Proc. SIGGRAPH) 22, 3. Google ScholarDigital Library
50. Xie, H., and Miyata, K. 2013. Stochastic modeling of immersed rigid-body dynamics. In SIGGRAPH Asia 2013 Technical Briefs, 12:1–12:4. Google ScholarDigital Library
51. Yuan, Z., Chen, F., and Zhao, Y. 2011. Stochastic modeling of light-weight floating objects. In Symposium on Interactive 3D Graphics and Games, I3D ’11, 213–213. Google ScholarDigital Library
52. Zhong, H., Chen, S., and Lee, C. 2011. Experimental study of freely falling thin disks: Transition from planar zigzag to spiral. Physics of Fluids 23, 1.Google ScholarCross Ref
53. Zhu, L., Xu, W., Snyder, J., Liu, Y., Wang, G., and Guo, B. 2012. Motion-guided mechanical toy modeling. ACM Trans. Graph. (Proc. SIGGRAPH Asia) 31, 6. Google ScholarDigital Library