“Non-iterative, feature-preserving mesh smoothing” by Jones, Durand and Desbrun

  • ©Thouis R. Jones, Frédo Durand, and Mathieu Desbrun




    Non-iterative, feature-preserving mesh smoothing



    With the increasing use of geometry scanners to create 3D models, there is a rising need for fast and robust mesh smoothing to remove inevitable noise in the measurements. While most previous work has favored diffusion-based iterative techniques for feature-preserving smoothing, we propose a radically different approach, based on robust statistics and local first-order predictors of the surface. The robustness of our local estimates allows us to derive a non-iterative feature-preserving filtering technique applicable to arbitrary “triangle soups”. We demonstrate its simplicity of implementation and its efficiency, which make it an excellent solution for smoothing large, noisy, and non-manifold meshes.


    1. ALEXA, M. 2002. Wiener Filtering of Meshes. In Proceedingsof Shape Modeling International, 51–57. Google Scholar
    2. BAJAJ, C., AND XU, G. 2003. Anisotropic Diffusion on Surfaces and Functions on Surfaces. ACM Trans. Gr. 22, 1, 4–32. Google ScholarDigital Library
    3. BARASH, D. 2001. A Fundamental Relationship between Bilateral Filtering, Adaptive Smoothing and the Nonlinear Diffusion Equation. IEEE PAMI 24, 6, 844. Google Scholar
    4. BELYAEV, A., AND OHTAKE, Y. 2001. Nonlinear Diffusion of Normals for Crease Enhancement. In Vision Geometry X, SPIE Annual Meeting, 42–47.Google Scholar
    5. BLACK, M., SAPIRO, G., MARIMONT, D., AND HEEGER, D. 1998. Robust anisotropic diffusion. IEEE Trans. Image Processing 7, 3, 421–432. Google ScholarDigital Library
    6. CLARENZ, U., DIEWALD, U., AND RUMPF, M. 2000. Anisotropic geometric diffusion in surface processing. In IEEE Visualization 2000, 397–405. Google ScholarDigital Library
    7. DESBRUN, M., MEYER, M., SCHRÖODER, P., AND BARR, A. H. 1999. Implicit Fairing of Irregular Meshes Using Diffusion and Curvature Flow. In Proceedings of SIGGRAPH 99, 317–324. Google Scholar
    8. DESBRUN, M., MEYER, M., SCHRÖDER, P., and Barr, A. H. 2000. Anisotropic Feature-Preserving Denoising of Height Fields and Bivariate Data. In Graphics Interface, 145–152.Google Scholar
    9. DURAND, F., AND DORSEY, J. 2002. Fast Bilateral Filtering for the Display of High-Dynamic-Range Images. ACM Trans. Gr. 21, 3, 257–266. Google ScholarDigital Library
    10. ELAD, M. 2002. On the Bilateral Filter and Ways to Improve It. IEEE Trans. on Image Processing 11, 10, 1141–1151. Google ScholarDigital Library
    11. FLEISHMAN, S., DRORI, I., AND COHEN-OR, D. 2003. Bilateral Mesh Denoising. ACM Trans. Gr. (Proceedings of ACM SIGGRAPH). Google Scholar
    12. GUSKOV, I., AND WOOD, Z. 2001. Topological Noise Removal. In Graphics Interface 2001, 19–26. Google ScholarDigital Library
    13. HAMPEL, F. R., RONCHETTI, E. M., ROUSSEEUW, P. J., AND STAHEL, W. A. 1986. Robust Statistics: The Approach Based on Influence Functions. John Wiley and Sons. ISBN 0471-63238-4.Google Scholar
    14. HUBER, P. J. 1981. Robust Statistics. John Wiley and Sons.Google Scholar
    15. KHODAKOVSKY, A., SCHRÖDER, P., AND SWELDENS, W. 2000. Progressive Geometry Compression. In Proceedings of ACM SIGGRAPH 2000, 271–278. Google Scholar
    16. LEVIN, D. 2001. Mesh-independent surface interpolation. In Advances in Computational Mathematics, in press.Google Scholar
    17. LEVOY, M., PULLI, K., CURLESS, B., RUSINKIEWICZ, S., KOLLER, D., PEREIRA, L., GINZTON, M., ANDERSON, S., DAVIS, J., GINSBERG, J., SHADE, J., AND FULK, D. 2000. The Digital Michelangelo Project: 3D Scanning of Large Statues. In Proceedings of SIGGRAPH 2000, 131–144. Google ScholarDigital Library
    18. MEYER, M., DESBRUN, M., SCHRÖDER, P., AND BARR, A. H. 2002. Discrete Differential-Geometry Operators for Triangulated 2-Manifolds. In Proceedings of Visualization and Mathematics.Google Scholar
    19. MURIO, D. A. 1993. The mollification method and the numerical solution of ill-posed problems. Wiley.Google Scholar
    20. OHTAKE, Y., BELYAEV, A., AND BOGAESKI, I. 2000. Polyhedral Surface Smoothing with Simultaneous Mesh Regularization. In Geometric Modeling and Processing, 229–237. Google Scholar
    21. OHTAKE, Y., BELYAEV, A., AND SEIDEL, H.-P. 2002. Mesh Smoothing by Adaptive and Anisotropic Gaussian Filter. In Vision, Modeling and Visualization, 203–210.Google Scholar
    22. OSHER, S., AND FEDKIW, R. P. 2002. Level Set Methods and Dynamic Implicit Surfaces. Springer-Verlag, NY.Google Scholar
    23. PAULY, M., AND GROSS, M. 2001. Spectral Processing of Point-Sampled Geometry. In Proceedings of ACM SIGGRAPH 2001, 379–386. Google Scholar
    24. PENG, J., STRELA, V., AND ZORIN, D. 2001. A Simple Algorithm for Surface Denoising. In Proceedings of IEEE Visualization 2001, 107–112. Google ScholarDigital Library
    25. PERONA, P., AND MALIK, J. 1990. Scale-space and edge detection using anisotropic diffusion. IEEE PAMI 12, 7, 629–639. Google ScholarDigital Library
    26. RUSINKIEWICZ, S., HALL-HOLT, O., AND LEVOY, M. 2002. Real-Time 3D Model Acquisition. ACM Trans. Gr. 21, 3, 438–446. Google ScholarDigital Library
    27. SMITH, S., AND BRADY, J. 1997. SUSAN – a new approach to low level image processing. IJCV 23, 45–78. Google ScholarDigital Library
    28. TASDIZEN, T., WHITAKER, R., BURCHARD, P., AND OSHER, S. 2002. Geometric Surface Smoothing via Anisotropic Diffusion of Normals. In Proceedings, IEEE Visualization 2002, 125–132. Google ScholarDigital Library
    29. TAUBIN, G. 1995. A Signal Processing Approach to Fair Surface Design. In Proceedings of SIGGRAPH 95, 351–358. Google Scholar
    30. TAUBIN, G. 2001. Linear Anisotropic Mesh Filtering. Tech. Rep. IBM Research Report RC2213.Google Scholar
    31. TOMASI, C., AND MANDUCHI, R. 1998. Bilateral Filtering for Gray and Color Images. In Proc. IEEE Int. Conf. on Computer Vision, 836–846. Google Scholar
    32. WOOD, Z., HOPPE, H., DESBRUN, M., AND SCHRÖDER, P. 2002. Isosurface Topology Simplification. http://www.multires.caltech.edu/pubs/.Google Scholar
    33. ZHANG, H., AND FIUME, E. L. 2002. Mesh Smoothing with Shape or Feature Preservation. In Advances in Modeling, Animation, and Rendering, J. Vince and R. Earnshaw, editors, 167–182.Google Scholar
    34. ZWICKER, M., PAULY, M., KNOLL, O., AND GROSS, M. 2002. Pointshop 3D: An Interactive System for Point-Based Surface Editing. ACM Trans. Gr. 21, 3, 322–329. Google ScholarDigital Library

ACM Digital Library Publication: