“NETRA: interactive display for estimating refractive errors and focal range” by Pamplona, Mohan, Oliveira and Raskar

  • ©Vitor F. Pamplona, Ankit Mohan, Manuel M. Oliveira, and Ramesh Raskar




    NETRA: interactive display for estimating refractive errors and focal range



    We introduce an interactive, portable, and inexpensive solution for estimating refractive errors in the human eye. While expensive optical devices for automatic estimation of refractive correction exist, our goal is to greatly simplify the mechanism by putting the human subject in the loop. Our solution is based on a high-resolution programmable display and combines inexpensive optical elements, interactive GUI, and computational reconstruction. The key idea is to interface a lenticular view-dependent display with the human eye in close range – a few millimeters apart. Via this platform, we create a new range of interactivity that is extremely sensitive to parameters of the human eye, like refractive errors, focal range, focusing speed, lens opacity, etc. We propose several simple optical setups, verify their accuracy, precision, and validate them in a user study.


    1. Akeley, K., Watt, S. J., Girshick, A. R., and Banks, M. S. 2004. A stereo display prototype with multiple focal distances. In SIGGRAPH 2004, 804–813. Google ScholarDigital Library
    2. Barsky, B. A. 2004. Vision-realistic rendering: simulation of the scanned foveal image from wavefront data of human subjects. In APGV 2004, ACM, 73–81. Google ScholarDigital Library
    3. Berger, I., Spitzberg, L., Nnadozie, J., Bailey, N., Feaster, J., Kuether, C., Tran, M., and Swann, S. 1993. Testing the FOCOMETER – a new refractometer. Optometry & Vision Science 70, 4, 332–338.Google Scholar
    4. Cui, J., Wang, Y., Huang, J., Tan, T., and Sun, Z. 2004. An iris image synthesis method based on PCA and super-resolution. In ICPR 2004, IEEE Comp. Soc., 471–474. Google ScholarDigital Library
    5. Cushman, W. B., 1993. Small, simple and cost-effective scheiner-principle optometer with computer interface for automated assessment. US Patent 5223866.Google Scholar
    6. Day, M., Gray, L. S., Seidel, D., and Strang, N. C. 2009. The relationship between object spatial profile and accommodation microfluctuations in emmetropes and myopes. Journal of Vision 9 (10), 1–13.Google ScholarCross Ref
    7. Deering, M. F. 2005. A photon accurate model of the human eye. In SIGGRAPH 2005, vol. 24, 649–658. Google ScholarDigital Library
    8. Hoffman, D. M., Girshick, A. R., Akeley, K., and Banks, M. S. 2005. Vergence–accommodation conflicts hinder visual performance and cause visual fatigue. J. Vis. 5, 10, 834–862.Google Scholar
    9. Lam, M. W. Y., and Baranoski, G. V. G. 2006. A predictive light transport model for the human iris. In EUROGRAPHICS 2006, vol. 25, 359–368.Google Scholar
    10. Lefohn, A., Budge, B., Shirley, P., Caruso, R., and Reinhard, E. 2003. An ocularist’s approach to human iris synthesis. IEEE Computer Graphics and Applications 23, 6, 70–75. Google ScholarDigital Library
    11. Levoy, M., Zhang, Z., and McDowall, I. 2009. Recording and controlling the 4D light field in a microscope. Journal of Microscopy 235, 2, 144–162.Google ScholarCross Ref
    12. Liang, J., Grimm, B., Goelz, S., and Bille, J. 1994. Objective measurement of wave aberrations of the human eye with the use of a Hartmann-Shack sensor. JOSA A 11, 1949–1957.Google ScholarCross Ref
    13. Liu, S., and Hua, H. 2009. Time-multiplexed dual-focal plane head-mounted display with a liquid lens. Optics Letters 34, 11, 1642–1644.Google ScholarCross Ref
    14. Makthal, S., and Ross, A. 2005. Synthesis of iris images using markov random fields. In EUSIPCO 2005.Google Scholar
    15. Mohan, A., Woo, G., Hiura, S., Smithwick, Q., and Raskar, R. 2009. Bokode: Imperceptible visual tags for camera based interaction from a distance. In SIGGRAPH 2009. Google ScholarDigital Library
    16. Naor, M., and Shamir, A. 1994. Visual cryptography. In EUROCRYPT 1994, 1–12.Google Scholar
    17. Navarro, R., and Losada, M. 1997. Aberrations and relative efficiency of light pencils in the living human eye. Optometry & Vision Science 74, 540–547.Google Scholar
    18. Ng, R., and Hanrahan, P. 2006. Digital correction of lens aberrations in light field photography. In SPIE International Optical Design Conference, vol. 6342.Google Scholar
    19. OptiOpia. http://www.optiopia.com/.Google Scholar
    20. Pamplona, V. F., Oliveira, M. M., and Baranoski, G. 2009. Photorealistic models for pupil light reflex and iridal pattern deformation. Transactions on Graphics 28(4), 106. Google ScholarDigital Library
    21. Ritschel, T., Ihrke, M., Frisvad, J. R., Coppens, J., Myszkowski, K., and Seidel, H.-P. 2009. Temporal glare: Real-time dynamic simulation of the scattering in the human eye. EUROGRAPHICS 28, 3, 183–192.Google ScholarCross Ref
    22. Rolland, J. P., Krueger, M. W., and Goon, A. 2000. Multifocal planes head-mounted displays. Applied Optics 39, 19, 3209–3215.Google ScholarCross Ref
    23. Sagar, M. A., Bullivant, D., Mallinson, G. D., and Hunter, P. J. 1994. A virtual environment and model of the eye for surgical simulation. In SIGGRAPH 1994, 205–212. Google ScholarDigital Library
    24. Thibos, L., Wheeler, W., and Horner, D. 1997. Power vectors: An application of fourier analysis to the description and statistical analysis of refractive error. Optometry and Vision Science 74, 6, 367–375.Google ScholarCross Ref
    25. Tscherning, M. 1894. Die monochromatischen aberrationen des menschlichen auges. Z. Psychol. Psysiol. Sinn. 6, 456–471.Google Scholar
    26. Webb, R., Penney, C., and Thompson, K. 1992. Measurement of ocular wavefrontdistortion with a spatially resolved refractometer. Applied Optics 31, 3678–3686.Google ScholarCross Ref
    27. Wecker, L., Samavati, F., and Gavrilova, M. 2005. Iris synthesis: a reverse subdivision application. In GRAPHITE 2005, 121–125. Google ScholarDigital Library

ACM Digital Library Publication: