“Multiple interacting liquids” by Losasso, Shinar, Selle and Fedkiw
Conference:
Type(s):
Title:
- Multiple interacting liquids
Presenter(s)/Author(s):
Abstract:
The particle level set method has proven successful for the simulation of two separate regions (such as water and air, or fuel and products). In this paper, we propose a novel approach to extend this method to the simulation of as many regions as desired. The various regions can be liquids (or gases) of any type with differing viscosities, densities, viscoelastic properties, etc. We also propose techniques for simulating interactions between materials, whether it be simple surface tension forces or more complex chemical reactions with one material converting to another or two materials combining to form a third. We use a separate particle level set method for each region, and propose a novel projection algorithm that decodes the resulting vector of level set values providing a “dictionary” that translates between them and the standard single-valued level set representation. An additional difficulty occurs since discretization stencils (for interpolation, tracing semi-Lagrangian rays, etc.) cross region boundaries naively combining non-smooth or even discontinuous data. This has recently been addressed via ghost values, e.g. for fire or bubbles. We instead propose a new paradigm that allows one to incorporate physical jump conditions in data “on the fly,” which is significantly more efficient for multiple regions especially at triple points or near boundaries with solids.
References:
1. Carlson, M., Mucha, P., Van Horn, R., and Turk, G. 2002. Melting and flowing. In ACM SIGGRAPH Symp. on Comput. Anim., 167–174. Google ScholarDigital Library
2. Carlson, M., Mucha, P. J., and Turk, G. 2004. Rigid fluid: Animating the interplay between rigid bodies and fluid. ACM Trans. Graph. (SIGGRAPH Proc.) 23, 377–384. Google ScholarDigital Library
3. Chen, J., and Lobo, N. 1994. Toward interactive-rate simulation of fluids with moving obstacles using the navier-stokes equations. Comput. Graph. and Image Processing 57, 107–116. Google ScholarDigital Library
4. Enright, D., Marschner, S., and Fedkiw, R. 2002. Animation and rendering of complex water surfaces. ACM Trans. Graph. (SIGGRAPH Proc.) 21, 3, 736–744. Google ScholarDigital Library
5. Enright, D., Nguyen, D., Gibou, F., and Fedkiw, R. 2003. Using the particle level set method and a second order accurate pressure boundary condition for free surface flows. In Proc. 4th ASME-JSME Joint Fluids Eng. Conf., no. FEDSM2003–45144, ASME.Google Scholar
6. Fattal, R., and Lischinski, D. 2004. Target-driven smoke animation. ACM Trans. Graph. (SIGGRAPH Proc.) 23, 441–448. Google ScholarDigital Library
7. Fedkiw, R., Aslam, T., Merriman, B., and Osher, S. 1999. A non-oscillatory Eulerian approach to interfaces in multimaterial flows (the ghost fluid method). J. Comput. Phys. 152, 457–492. Google ScholarDigital Library
8. Fedkiw, R., Stam, J., and Jensen, H. 2001. Visual simulation of smoke. In Proc. of ACM SIGGRAPH 2001, 15–22. Google ScholarDigital Library
9. Feldman, B. E., O’Brien, J. F., and Arikan, O. 2003. Animating suspended particle explosions. ACM Trans. Graph. (SIGGRAPH Proc.) 22, 3, 708–715. Google ScholarDigital Library
10. Feldman, B., O’Brien, J., and Klingner, B. 2005. Animating gases with hybrid meshes. ACM Trans. Graph. (SIGGRAPH Proc.) 24, 3, 904–909. Google ScholarDigital Library
11. Foster, N., and Fedkiw, R. 2001. Practical animation of liquids. In Proc. of ACM SIGGRAPH 2001, 23–30. Google ScholarDigital Library
12. Foster, N., and Metaxas, D. 1996. Realistic animation of liquids. Graph. Models and Image Processing 58, 471–483. Google ScholarDigital Library
13. Foster, N., and Metaxas, D. 1997. Controlling fluid animation. In Comput. Graph. Int., 178–188. Google ScholarDigital Library
14. Foster, N., and Metaxas, D. 1997. Modeling the motion of a hot, turbulent gas. In Proc. of SIGGRAPH 97, 181–188. Google ScholarDigital Library
15. Gascuel, M.-P. 1993. An implicit formulation for precise contact modeling between flexible solids. In Proc. SIGGRAPH 93, 313–320. Google ScholarDigital Library
16. Goktekin, T. G., Bargteil, A. W., and O’Brien, J. F. 2004. A method for animating viscoelastic fluids. ACM Trans. Graph. (SIGGRAPH Proc.) 23, 463–467. Google ScholarDigital Library
17. Guendelman, E., Selle, A., Losasso, F., and Fedkiw, R. 2005. Coupling water and smoke to thin deformable and rigid shells. ACM Trans. Graph. (SIGGRAPH Proc.) 24, 3, 973–981. Google ScholarDigital Library
18. Hong, J.-M., and Kim, C.-H. 2003. Animation of bubbles in liquid. Comp. Graph. Forum (Eurographics Proc.) 22, 3, 253–262.Google ScholarCross Ref
19. Hong, J.-M., and Kim, C.-H. 2005. Discontinuous fluids. ACM Trans. Graph. (SIGGRAPH Proc.) 24, 3, 915–919. Google ScholarDigital Library
20. Hong, J.-M. 2005. Visual Simulation of Fluids with Discontinuous State Variables. PhD thesis, Korea University.Google Scholar
21. Houston, B., Nielsen, M., Batty, C., Nilsson, O., and Museth, K. 2006. Hierarchical RLE level set: A compact and versatile deformable surface representation. ACM Trans. Graph. 25, 1, 1–24. Google ScholarDigital Library
22. Ihm, I., Kang, B., and Cha, D. 2004. Animation of reactive gaseous fluids through chemical kinetics. In Proc. of the 2004 ACM SIGGRAPH/Eurographics Symp. on Comput. Anim., 203–212. Google ScholarDigital Library
23. Irving, G. 2007. PhD thesis, Stanford University.Google Scholar
24. Kang, M., Fedkiw, R., and Liu, X.-D. 2000. A boundary condition capturing method for multiphase incompressible flow. J. Sci. Comput. 15, 323–360. Google ScholarDigital Library
25. Kass, M., and Miller, G. 1990. Rapid, stable fluid dynamics for computer graphics. In Comput. Graph. (Proc. of SIGGRAPH 90), vol. 24, 49–57. Google ScholarDigital Library
26. Keiser, R., Adams, B., Gasser, D., Bazzi, P., Dutré, P., and GROSS, M. 2005. A unified lagrangian approach to solid-fluid animation. In Eurographics Symp. on Point-Based Graph. Google ScholarDigital Library
27. Lamorlette, A., and Foster, N. 2002. Structural modeling of natural flames. ACM Trans. Graph. (SIGGRAPH Proc.) 21, 3, 729–735. Google ScholarDigital Library
28. Losasso, F., Gibou, F., and Fedkiw, R. 2004. Simulating water and smoke with an octree data structure. ACM Trans. Graph. (SIGGRAPH Proc.) 23, 457–462. Google ScholarDigital Library
29. Losasso, F., Irving, G., Guendelman, E., and Fedkiw, R. 2006. Melting and burning solids into liquids and gases. IEEE Trans. on Vis. and Comput. Graph. 12, 3, 343–352. Google ScholarDigital Library
30. McNamara, A., Treuille, A., Popović, Z., and Stam, J. 2004. Fluid control using the adjoint method. ACM Trans. Graph. (SIGGRAPH Proc.), 449–456. Google ScholarDigital Library
31. Melek, Z., and Keyser, J. 2005. Multi-representation interaction for physically based modeling. In ACM Symp. on Solid and Physical Modeling, 187–196. Google ScholarDigital Library
32. Merriman, B., Bence, J., and Osher, S. 1994. Motion of multiple junctions: A level set approach. J. Comput. Phys. 112, 334–363. Google ScholarDigital Library
33. Mihalef, V., Metaxas, D., and Sussman, M. 2004. Animation and control of breaking waves. In Proc. of the 2004 ACM SIGGRAPH/Eurographics Symp. on Comput. Anim., 315–324. Google ScholarDigital Library
34. Müller, M., Solenthaler, B., Keiser, R., and Gross, M. 2005. Particle-based fluid-fluid interaction. In Proc. of the 2005 ACM SIGGRAPH/Eurographics Symp. on Comput. Anim., 237–244. Google ScholarDigital Library
35. Neff, M., and Fiume, E. 1999. A visual model for blast waves and fracture. In Proc. of Graph. Interface 1999, 193–202. Google ScholarDigital Library
36. Nguyen, D., Fedkiw, R., and Jensen, H. 2002. Physically based modeling and animation of fire. ACM Trans. Graph. (SIGGRAPH Proc.) 29, 721–728. Google ScholarDigital Library
37. Premoze, S., Tasdizen, T., Bigler, J., Lefohn, A., and Whitaker, R. 2003. Particlebased simulation of fluids. In Comp. Graph. Forum (Eurographics Proc.), vol. 22, 401–410.Google ScholarCross Ref
38. Rasmussen, N., Nguyen, D., Geiger, W., and Fedkiw, R. 2003. Smoke simulation for large scale phenomena. ACM Trans. Graph. (SIGGRAPH Proc.) 22, 703–707. Google ScholarDigital Library
39. Rasmussen, N., Enright, D., Nguyen, D., Marino, S., Sumner, N., Geiger, W., Hoon, S., and Fedkiw, R. 2004. Directible photorealistic liquids. In Proc. of the 2004 ACM SIGGRAPH/Eurographics Symp. on Comput. Anim., 193–202. Google ScholarDigital Library
40. Ruuth, S. 1998. A diffusion-generated approach to multiphase motion. J. Comput. Phys. 145, 166–192. Google ScholarDigital Library
41. Selle, A., Rasmussen, N., and Fedkiw, R. 2005. A vortex particle method for smoke, water and explosions. ACM Trans. Graph. (SIGGRAPH Proc.) 24, 3, 910–914. Google ScholarDigital Library
42. Shi, L., and Yu, Y. 2005. Taming liquids for rapidly changing targets. In Proc. of the ACM SIGGRAPH/Eurographics Symp. on Comput. Anim., 229–236. Google ScholarDigital Library
43. Smith, K., Solis, F., and Chopp, D. 2002. A projection method for motion of triple junctions by level sets. Interfaces and Free Boundaries 4, 3, 263–276.Google ScholarCross Ref
44. Stam, J., and Fiume, E. 1995. Depicting Fire and Other Gaseous Phenomena Using Diffusion Process. In Proc. of SIGGRAPH 1995, 129–136. Google ScholarDigital Library
45. Stam, J. 1999. Stable fluids. In Proc. of SIGGRAPH 99, 121–128. Google ScholarDigital Library
46. Stam, J. 2003. Flows on surfaces of arbitrary topology. ACM Trans. Graph. (SIGGRAPH Proc.) 22, 724–731. Google ScholarDigital Library
47. Treuille, A., McNamara, A., Popović, Z., and Stam, J. 2003. Keyframe control of smoke simulations. ACM Trans. Graph. (SIGGRAPH Proc.) 22, 3, 716–723. Google ScholarDigital Library
48. Vese, L., and Chan, T. 2002. A multiphase level set framework for image segmentation using the mumford and shah model. Int. J. of Comput. Vision 50, 3, 271–293. Google ScholarDigital Library
49. Wang, H., Mucha, P., and Turk, G. 2005. Water drops on surfaces. ACM Trans. Graph. (SIGGRAPH Proc.) 24, 3, 921–929. Google ScholarDigital Library
50. Yngve, G., O’Brien, J., and Hodgins, J. 2000. Animating explosions. In Proc. SIGGRAPH 2000, vol. 19, 29–36. Google ScholarDigital Library
51. Zhao, H.-K., Chan, T., Merriman, B., and Osher, S. 1996. A variational level set approach to multiphase motion. J. Comput. Phys. 127, 179–195. Google ScholarDigital Library
52. Zhu, Y., and Bridson, R. 2005. Animating sand as a fluid. ACM Trans. Graph. (SIGGRAPH Proc.) 24, 3, 965–971. Google ScholarDigital Library