“Multi-scale vorticle fluids”

  • ©Alexis Angelidis




    Multi-scale vorticle fluids

Session/Category Title: Fluids II




    We present a multi-scale method for simulating incompressible gases in 3-dimensions with resolution variation suitable for perspective cameras and regions of importance. The dynamics is derived from the vorticity equation. Lagrangian particles are created, modified and deleted in a manner that handles advection with buoyancy and viscosity. Boundaries and deformable object collisions are modeled with the source and doublet panel method. Our acceleration structure is based on the FMM (Fast Multipole Method), but with a varying size to account for non-uniform sampling. Because the dynamics of our method is voxel free, we can freely specify the voxel resolution of the output density and velocity while keeping the main shapes and timing.


    1. Alexis Angelidis, Marie-Paule Cani, Geoff Wyvill, and Scott King. 2006a. Swirling-sweepers: constant volume modeling. Graphical Models (GMOD) 68, 4 (Jul 2006). Special issue on PG’04.Google Scholar
    2. Alexis Angelidis, Fabrice Neyret, Karan Singh, and Derek Nowrouzezahrai. 2006b. A Controllable, Fast and Stable Basis for Vortex Based Smoke Simulation. In Proceedings of the 2006 ACM SIGGRAPH/Eurographics Symposium on Computer Animation. Eurographics Association, 25–32.Google ScholarDigital Library
    3. Rutherford Aris. 2012. Vectors, Tensors and the Basic Equations of Fluid Mechanics. Dover Publications.Google Scholar
    4. J. Thomas Beale and Andrew Majda. 1982. Vortex methods I: Convergence in three dimensions. Math. Comp. 39 (Jul 1982), 1–27.Google Scholar
    5. Tyson Brochu, Todd Keeler, and Robert Bridson. 2012. Linear-time Smoke Animation with Vortex Sheet Meshes. In Proceedings of the ACM SIGGRAPH/Eurographics Symposium on Computer Animation. Eurographics Association, 87–95.Google ScholarDigital Library
    6. Michael J. Carley. 2012. Analytical Formulae for Potential Integrals on Triangles. Journal of Applied Mechanics 80, 4 (Oct 2012).Google Scholar
    7. Albert Chern, Felix Knöppel, Ulrich Pinkall, Peter Schröder, and Steffen Weißmann. 2016. Schrödinger’s Smoke. ACM Trans. Graph. 35, 4, Article 77 (Jul 2016), 13 pages.Google ScholarDigital Library
    8. Georges-Henri. Cottet and Petros D. Koumoutsakos. 2000. Vortex Methods: Theory and Practice. Cambridge University Press.Google Scholar
    9. Benoit Couet, Oscar Buneman, and Anthony Leonard. 1981. Simulation of three-dimensional incompressible flows with a vortex-in-cell method. J. Comput. Phys. 39 (Feb 1981), 305–328. Google ScholarCross Ref
    10. Tyler de Witt, Christian Lessig, and Eugene Fiume. 2012. Fluid Simulation Using Laplacian Eigenfunctions. ACM Trans. Graph. 31, 1, Article 10 (Feb 2012), 11 pages.Google ScholarDigital Library
    11. Sharif Elcott, Yiying Tong, Eva Kanso, Peter Schröder, and Mathieu Desbrun. 2007. Stable, Circulation-preserving, Simplicial Fluids. ACM Trans. Graph. 26, 1, Article 4 (Jan 2007), 12 pages.Google Scholar
    12. Larry L. Erickson. 1990. Panel methods: An introduction. Technical Report. NASA Ames Research Center.Google Scholar
    13. Nick Foster and Dimitris Metaxas. 1997. Modeling the Motion of a Hot, Turbulent Gas. In Proceedings of the 24th Annual Conference on Computer Graphics and Interactive Techniques (SIGGRAPH ’97). ACM Press/Addison-Wesley Publishing Co., 181–188. Google ScholarDigital Library
    14. Uriel Frisch and A.N. Kolmogorov. 1995. Turbulence: The Legacy of Andrei N. Kolmogorov. Cambridge University Press.Google ScholarCross Ref
    15. Robert A. Gingold and Joe J. Monaghan. 1977. Smoothed particle hydrodynamics – Theory and application to non-spherical stars. Monthly Notices of the Royal Astronomical Society 181 (Nov 1977), 375–389. Google ScholarCross Ref
    16. Leslie Greengard and Vladimir Rokhlin. 1987. A Fast Algorithm for Particle Simulations. J. Comput. Phys. 73, 2 (Dec 1987), 325–348. Google ScholarDigital Library
    17. Doyub Kim, Seung Woo Lee, Oh-Young Song, and Ko Hyeong-Seok. 2012. Baroclinic Turbulence with Varying Density and Temperature. IEEE Transactions on Visualization and Computer Graphics 18 (2012), 1488–1495. Google ScholarDigital Library
    18. Theodore Kim, Nils Thürey, Doug James, and Markus Gross. 2008. Wavelet Turbulence for Fluid Simulation. ACM Trans. Graph. 27, 3, Article 50 (Aug 2008), 6 pages. Google ScholarDigital Library
    19. Ken Museth. 2013. VDB: High-resolution Sparse Volumes with Dynamic Topology. ACM Trans. Graph. 32, 3 (Jul 2013). Google ScholarDigital Library
    20. Sang Il Park and Myoung Jun Kim. 2005. Vortex Fluid for Gaseous Phenomena. In Proceedings of the 2005 ACM SIGGRAPH/Eurographics Symposium on Computer Animation (SCA ’05). ACM, 261–270. Google ScholarDigital Library
    21. Tobias Pfaff, Nils Thuerey, and Markus Gross. 2012. Lagrangian Vortex Sheets for Animating Fluids. ACM Trans. Graph. 31, 4, Article 112 (Jul 2012), 8 pages.Google ScholarDigital Library
    22. Tobias Pfaff, Nils Thuerey, Andrew Selle, and Markus Gross. 2009. Synthetic Turbulence Using Artificial Boundary Layers. ACM Trans. Graph. 28, 5, Article 121 (Dec. 2009), 10 pages. Google ScholarDigital Library
    23. Andrew Selle, Nick Rasmussen, and Ronald Fedkiw. 2005. A Vortex Particle Method for Smoke, Water and Explosions. In ACM SIGGRAPH 2005 Papers (SIGGRAPH ’05). ACM, 910–914. Google ScholarDigital Library
    24. Tarun Kumar Sheel. 2011. Acceleration of Vortex Methods Calculation Using FMM and MDGRAPE-3. Progress In Electromagnetics Research B 27 (2011), 327–348. Google ScholarCross Ref
    25. SideFX. 2016. Houdini 15.5. (May 2016). https://www.sidefx.comGoogle Scholar
    26. Jos Stam. 1999. Stable Fluids. In Proceedings of the 26th Annual Conference on Computer Graphics and Interactive Techniques (SIGGRAPH ’99). ACM Press/Addison-Wesley Publishing Co., 121–128. Google ScholarDigital Library
    27. Adriaan van Oosterom. 2011. Closed-form analytical expressions for the potential fields generated by triangular monolayers with linearly distributed source strength. Medical & Biological Engineering & Computing (MBEC) 50, 1 (Oct 2011), 1–9. Google ScholarCross Ref
    28. Adriaan van Oosterom and Jan Strackee. 1983. The solid angle of a plane triangle (IEEE Transactions on Biomedial Engineering) Vol. 30. IEEE, 125–126.Google Scholar
    29. Steffen Weissmann and Ulrich Pinkall. 2010. Filament-based Smoke with Vortex Shedding and Variational Reconnection. ACM Trans. Graph. 29, 4, Article 115 (Jul 2010), 12 pages. Google ScholarDigital Library
    30. Magnus Wrenninge. 2016. Efficient Rendering of Volumetric Motion Blur Using Temporally Unstructured Volumes. Journal of Computer Graphics Techniques (JCGT) 5, 1 (Jan 2016).Google Scholar
    31. Lexing Ying. 2012. A pedestrian introduction to fast multipole methods. Science China Mathematics 55, 5 (2012), 1043–1051. Google ScholarCross Ref
    32. Xinxin Zhang and Robert Bridson. 2014. A PPPM Fast Summation Method for Fluids and Beyond. ACM Trans. Graph. 33, 6 (Nov 2014). Google ScholarDigital Library

ACM Digital Library Publication:

Overview Page: