“Motion Reconstruction Using Sparse Accelerometer Data” by Tautges, Zinke, Krüger, Baumann, Weber, et al. …

  • ©Jochen Tautges, Arno Zinke, Björn Krüger, Jan Baumann, Andreas Weber, Thomas Helten, Meinard Müller, Hans-Peter Seidel, and Bernd Eberhardt

Conference:


Type(s):


Title:

    Motion Reconstruction Using Sparse Accelerometer Data

Presenter(s)/Author(s):



Abstract:


    The development of methods and tools for the generation of visually appealing motion sequences using prerecorded motion capture data has become an important research area in computer animation. In particular, data-driven approaches have been used for reconstructing high-dimensional motion sequences from low-dimensional control signals. In this article, we contribute to this strand of research by introducing a novel framework for generating full-body animations controlled by only four 3D accelerometers that are attached to the extremities of a human actor. Our approach relies on a knowledge base that consists of a large number of motion clips obtained from marker-based motion capturing. Based on the sparse accelerometer input a cross-domain retrieval procedure is applied to build up a lazy neighborhood graph in an online fashion. This graph structure points to suitable motion fragments in the knowledge base, which are then used in the reconstruction step. Supported by a kd-tree index structure, our procedure scales to even large datasets consisting of millions of frames. Our combined approach allows for reconstructing visually plausible continuous motion streams, even in the presence of moderate tempo variations which may not be directly reflected by the given knowledge base.

References:


    1. Andoni, A. and Indyk, P. 2008. Near-Optimal hashing algorithms for approximate nearest neighbor in high dimensions. Commun. ACM 51, 1, 117–122.
    2. Arikan, O., Forsyth, D. A., and O’Brien, J. F. 2003. Motion synthesis from annotations. ACM Trans. Graph. 22, 3, 402–408.
    3. Badler, N. I., Hollick, M. J., and Granieri, J. P. 1993. Real-Time control of a virtual human using minimal sensors. Presence: Teleoper. Virtual Environ. 1, 82–86.
    4. Chai, J. and Hodgins, J. K. 2005. Performance animation from low-dimensional control signals. ACM Trans. Graph. 24, 3, 686–696.
    5. Cooper, S., Hertzmann, A., and Popović, Z. 2007. Active learning for real-time motion controllers. ACM Trans. Graph. 26, 3, 5. 
    6. Dontcheva, M., Yngve, G., and Popović, Z. 2003. Layered acting for character animation. ACM Trans. Graph. 22, 409–416.
    7. Feng, W.-W., Kim, B.-U., and Yu, Y. 2008. Real-Time data driven deformation using kernel canonical correlation analysis. ACM Trans. Graph. 27, 91:1–91:9. 
    8. Kelly, P., Conaire, C. O., Hodgins, J., and O’Conner, N. E. 2010. Human motion reconstruction using wearable accelerometers (poster). In Proceedings of the ACM SIGGRAPH/Eurographics Symposium on Computer Animation (SCA).
    9. Keogh, E., Palpanas, T., Zordan, V. B., Gunopulos, D., and Cardle, M. 2004. Indexing large human-motion databases. In Proceedings of the 30th International Conference on Very Large Data Bases (VLDB’04). VLDB Endowment, 780–791.
    10. Kovar, L. and Gleicher, M. 2003. Flexible automatic motion blending with registration curves. In Proceedings of the Eurographics/SIGGRAPH Symposium on Computer Animation. D. Breen and M. Lin Eds., Eurographics Association, 214–224.
    11. Krüger, B., Tautges, J., Weber, A., and Zinke, A. 2010. Fast local and global similarity searches in large motion capture databases. In Proceedings of the Eurographics/ACM SIGGRAPH Symposium on Computer Animation. 1–10.
    12. Lee, Y., Wampler, K., Bernstein, G., Popović, J., and Popović, Z. 2010. Motion fields for interactive character locomotion. ACM Trans. Graph. 29, 138:1–138:8. 
    13. Maiocchi, R. 1996. 3-D Character Animation Using Motion Capture. Prentice-Hall, Upper Saddle River, NJ. 
    14. Moeslund, T. B., Hilton, A., and Krüger, V. 2006. A survey of advances in vision-based human motion capture and analysis. Comput. Vis. Image Underst. 104, 2, 90–126. 
    15. Müller, M., Röder, T., and Clausen, M. 2005. Efficient content-based retrieval of motion capture data. ACM Trans. Graph. 24, 677–685. 
    16. Müller, M., Röder, T., Clausen, M., Eberhardt, B., Krüger, B., and Weber, A. 2007. Documentation: Mocap database HDM05. Computer graphics Tech. rep. CG-2007-2, Universität Bonn. June. http://www.mpi-inf.mpg.de/resources/HDM05.
    17. Nike. 2010. Nike homepage. http://www.nike.com. (3/10.)
    18. Nintendo. 2010. Nintendo homepage. http://www.nintendo.com. (3/10.)
    19. Oore, S., Terzopoulos, D., and Hinton, G. 2002. A desktop input device and interface for interactive 3d character animation. In Proceedings of Graphics Interface Conference (GI’02). 133–140.
    20. PhaseSpace. 2010. PhaseSpace motion capture. http://www.phasespace.com. (3/10.)
    21. Pullen, K. and Bregler, C. 2002. Motion capture assisted animation: Texturing and synthesis. ACM Trans. Graph. 21, 501–508. 
    22. Schepers, H. M., Roetenberg, D., and Veltink, P. H. 2010. Ambulatory human motion tracking by fusion of inertial and magnetic sensing with adaptive actuation. Med. Biol. Engin. Comput. 48, 1, 27–37.
    23. Shin, H. J. and Lee, J. 2006. Motion synthesis and editing in low-dimensional spaces: Research articles. Comput. Animat. Virtual Worlds 17, 219–227. 
    24. Shin, H. J., Lee, J., Shin, S. Y., and Gleicher, M. 2001. Computer puppetry: An importance-Based approach. ACM Trans. Graph. 20, 67–94. 
    25. Shiratori, T. and Hodgins, J. K. 2008. Accelerometer-Based user interfaces for the control of a physically simulated character. ACM Trans. Graph. 27, 123:1–123:9. 
    26. Slyper, R. and Hodgins, J. 2008. Action capture with accelerometers. In Proceedings of the ACM/Eurographics Symposium on Computer Animation. 
    27. Sok, K. W., Kim, M., and Lee, J. 2007. Simulating biped behaviors from human motion data. ACM Trans. Graph. 26, 3, Article 107. 
    28. Tournier, M., Wu, X., Courty, N., Arnaud, E., and Revéret, L. 2009. Motion compression using principal geodesics analysis. Comput. Graph. Forum 28, 2, 355–364.
    29. Vicon. 2010. Motion capture systems from vicon. http://www.vicon.com. (3/10.)
    30. Vlasic, D., Adelsberger, R., Vannucci, G., Barnwell, J., Gross, M., Matusik, W., and Popović, J. 2007. Practical motion capture in everyday surroundings. ACM Trans. Graph. 26.
    31. Wikipedia. 2010. Motion capture. http://en.wikipedia.org/wiki/Motion_capture. (3/10.)
    32. Xsens. 2010. 3D motion tracking. http://www.xsens.com. (3/10.)

ACM Digital Library Publication:



Overview Page: