“Modular flux transfer: efficient rendering of high-resolution volumes with repeated structures” by Zhao, Hasan, Ramamoorthi and Bala

  • ©Shuang Zhao, Milos Hasan, Ravi Ramamoorthi, and Kavita Bala

Conference:


Type:


Title:

    Modular flux transfer: efficient rendering of high-resolution volumes with repeated structures

Session/Category Title: Precomputed Rendering


Presenter(s)/Author(s):


Moderator(s):



Abstract:


    The highest fidelity images to date of complex materials like cloth use extremely high-resolution volumetric models. However, rendering such complex volumetric media is expensive, with brute-force path tracing often the only viable solution. Fortunately, common volumetric materials (fabrics, finished wood, synthesized solid textures) are structured, with repeated patterns approximated by tiling a small number of exemplar blocks. In this paper, we introduce a precomputation-based rendering approach for such volumetric media with repeated structures based on a modular transfer formulation. We model each exemplar block as a voxel grid and precompute voxel-to-voxel, patch-to-patch, and patch-to-voxel flux transfer matrices. At render time, when blocks are tiled to produce a high-resolution volume, we accurately compute low-order scattering, with modular flux transfer used to approximate higher-order scattering. We achieve speedups of up to 12× over path tracing on extremely complex volumes, with minimal loss of quality. In addition, we demonstrate that our approach outperforms photon mapping on these materials.

References:


    1. Arbree, A., Walter, B., and Bala, K. 2011. Heterogeneous subsurface scattering using the finite element method. IEEE Transactions on Visualization and Computer Graphics 17, 7, 956–969. Google ScholarDigital Library
    2. Arnaldi, B., Pueyo, X., and Vilaplana, J. 1994. On the division of environments by virtual walls for radiosity computation. In Photorealistic Rendering in Computer Graphics. Springer, 198–205.Google Scholar
    3. Bekaert, P. 1999. Hierarchical and stochastic algorithms for radiosity. PhD thesis, Katholieke Universiteit Leuven.Google Scholar
    4. D’Eon, E., and Irving, G. 2011. A quantized-diffusion model for rendering translucent materials. ACM Trans. Graph. 30, 4, 56:1–56:14. Google ScholarDigital Library
    5. Donner, C., and Jensen, H. W. 2005. Light diffusion in multi-layered translucent materials. ACM Trans. Graph. 24, 3, 1032–1039. Google ScholarDigital Library
    6. Donner, C., and Jensen, H. W. 2007. Rendering translucent materials using photon diffusion. In Proceedings of the 18th Eurographics conference on Rendering Techniques, Eurographics Association, 243–251. Google ScholarDigital Library
    7. Fattal, R. 2009. Participating media illumination using light propagation maps. ACM Trans. Graph. 28, 1, 7:1–7:11. Google ScholarDigital Library
    8. Forsythe, G., and Leibler, R. 1950. Matrix inversion by a monte carlo method. Mathematical Tables and Other Aids to Computation, 127–129.Google Scholar
    9. Jakob, W., Arbree, A., Moon, J. T., Bala, K., and Marschner, S. 2010. A radiative transfer framework for rendering materials with anisotropic structure. ACM Trans. Graph. 29, 4, 53:1–53:13. Google ScholarDigital Library
    10. Jakob, W., 2010. Mitsuba renderer. http://mitsuba-renderer.org.Google Scholar
    11. Jarosz, W., Nowrouzezahrai, D., Sadeghi, I., and Jensen, H. W. 2011. A comprehensive theory of volumetric radiance estimation using photon points and beams. ACM Trans. Graph. 30, 1, 5:1–5:19. Google ScholarDigital Library
    12. Jensen, H. W., and Christensen, P. H. 1998. Efficient simulation of light transport in scences with participating media using photon maps. In Proceedings of the 25th annual conference on Computer graphics and interactive techniques, ACM, 311–320. Google ScholarDigital Library
    13. Jensen, H. W., Marschner, S. R., Levoy, M., and Hanrahan, P. 2001. A practical model for subsurface light transport. In Proceedings of the 28th annual conference on Computer graphics and interactive techniques, ACM, 511–518. Google ScholarDigital Library
    14. Kajiya, J. T., and Von Herzen, B. P. 1984. Ray tracing volume densities. SIGGRAPH Comput. Graph. 18, 165–174. Google ScholarDigital Library
    15. Kopf, J., Fu, C.-W., Cohen-Or, D., Deussen, O., Lischinski, D., and Wong, T.-T. 2007. Solid texture synthesis from 2D exemplars. ACM Trans. Graph. 26, 3, 2:1–2:9. Google ScholarDigital Library
    16. Lensch, H., Goesele, M., Bekaert, P., Kautz, J., Magnor, M., Lang, J., and Seidel, H. 2003. Interactive rendering of translucent objects. In Computer Graphics Forum, vol. 22, 195–205.Google ScholarCross Ref
    17. Lewis, R. R., and Fournier, A. 1996. Light-driven global illumination with a wavelet representation of light transport. In In Seventh Eurographics Workshop on Rendering, Springer, 11–20. Google ScholarDigital Library
    18. Loos, B. J., Antani, L., Mitchell, K., Nowrouzezahrai, D., Jarosz, W., and Sloan, P.-P. 2011. Modular radiance transfer. ACM Trans. Graph. 30, 6, 178:1–178:10. Google ScholarDigital Library
    19. Marschner, S. R., Westin, S. H., Arbree, A., and Moon, J. T. 2005. Measuring and modeling the appearance of finished wood. ACM Trans. Graph. 24, 3, 727–734. Google ScholarDigital Library
    20. Moon, J. T., and Marschner, S. R. 2006. Simulating multiple scattering in hair using a photon mapping approach. ACM Trans. Graph. 25, 1067–1074. Google ScholarDigital Library
    21. Moon, J. T., Walter, B., and Marschner, S. R. 2007. Rendering discrete random media using precomputed scattering solutions. In Proceedings of the 18th Eurographics conference on Rendering Techniques, Eurographics Association, 231–242. Google ScholarDigital Library
    22. Moon, J. T., Walter, B., and Marschner, S. 2008. Efficient multiple scattering in hair using spherical harmonics. ACM Trans. Graph. 27, 3, 31:1–31:7. Google ScholarDigital Library
    23. Narasimhan, S. G., and Nayar, S. K. 2003. Shedding light on the weather. In Proceedings of the 2003 IEEE computer society conference on Computer vision and pattern recognition, IEEE Computer Society, 665–672. Google ScholarDigital Library
    24. Pauly, M., Kollig, T., and Keller, A. 2000. Metropolis light transport for participating media. In Proceedings of the Eurographics Workshop on Rendering Techniques 2000, 11–22. Google ScholarDigital Library
    25. Porumbescu, S. D., Budge, B., Feng, L., and Joy, K. I. 2005. Shell maps. ACM Trans. Graph. 24, 3, 626–633. Google ScholarDigital Library
    26. Premože, S., Ashikhmin, M., Tessendorf, J., Ramamoorthi, R., and Nayar, S. 2004. Practical rendering of multiple scattering effects in participating media. In Proceedings of the Fifteenth Eurographics conference on Rendering Techniques, Eurographics Association, 363–374. Google ScholarDigital Library
    27. Rushmeier, H. E., and Torrance, K. E. 1987. The zonal method for calculating light intensities in the presence of a participating medium. SIGGRAPH Comput. Graph. 21, 4, 293–302. Google ScholarDigital Library
    28. Schroder, K., Klein, R., and Zinke, A. 2011. A volumetric approach to predictive rendering of fabrics. Comput. Graph. Forum 30, 4, 1277–1286.Google ScholarDigital Library
    29. Veach, E. 1997. Robust Monte Carlo Methods for Light Transport Simulation. PhD thesis, Stanford University. Google ScholarDigital Library
    30. Walter, B., Khungurn, P., and Bala, K. 2012. Bidirectional lightcuts. ACM Trans. Graph. 31, 4, 59:1–59:11. Google ScholarDigital Library
    31. Wang, J., Zhao, S., Tong, X., Lin, S., Lin, Z., Dong, Y., Guo, B., and Shum, H.-Y. 2008. Modeling and rendering of heterogeneous translucent materials using the diffusion equation. ACM Trans. Graph. 27, 1, 1–18. Google ScholarDigital Library
    32. Xu, H., Peng, Q.-S., and Liang, Y.-D. 1990. Accelerated radiosity method for complex environments. Computers & Graphics 14, 1, 65–71.Google ScholarCross Ref
    33. Xu, Y.-Q., Chen, Y., Lin, S., Zhong, H., Wu, E., Guo, B., and Shum, H.-Y. 2001. Photorealistic rendering of knitwear using the lumislice. In Proceedings of the 28th annual conference on Computer graphics and interactive techniques, ACM, 391–398. Google ScholarDigital Library
    34. Zhao, S., Jakob, W., Marschner, S., and Bala, K. 2011. Building volumetric appearance models of fabric using micro CT imaging. ACM Trans. Graph. 30, 4, 44:1–44:10. Google ScholarDigital Library
    35. Zhao, S., Jakob, W., Marschner, S., and Bala, K. 2012. Structure-aware synthesis for predictive woven fabric appearance. ACM Trans. Graph. 31, 4, 75:1–75:10. Google ScholarDigital Library
    36. Zinke, A., Yuksel, C., Weber, A., and Keyser, J. 2008. Dual scattering approximation for fast multiple scattering in hair. ACM Trans. Graph. 27, 3, 32:1–32:10. Google ScholarDigital Library


ACM Digital Library Publication:



Overview Page: