“Modeling human color perception under extended luminance levels” by Kim, Weyrich and Kautz

  • ©Min H. Kim, Tim Weyrich, and Jan Kautz




    Modeling human color perception under extended luminance levels



    Display technology is advancing quickly with peak luminance increasing significantly, enabling high-dynamic-range displays. However, perceptual color appearance under extended luminance levels has not been studied, mainly due to the unavailability of psychophysical data. Therefore, we conduct a psychophysical study in order to acquire appearance data for many different luminance levels (up to 16,860 cd/m2) covering most of the dynamic range of the human visual system. These experimental data allow us to quantify human color perception under extended luminance levels, yielding a generalized color appearance model. Our proposed appearance model is efficient, accurate and invertible. It can be used to adapt the tone and color of images to different dynamic ranges for cross-media reproduction while maintaining appearance that is close to human perception.


    1. Akyüz, A. O., and Reinhard, E. 2006. Color appearance in high-dynamic-range imaging. J. Electronic Imaging 15, 3, 1–12.Google Scholar
    2. Bartleson, C., and Breneman, E. 1967. Brightness perception in complex fields. J. Opt. Soc. Am. 57, 7, 953–957.Google ScholarCross Ref
    3. Bartleson, C. J. 1979. Changes in color appearance with variations in chromatic adaptation. Color Res. Appl. 4, 3, 119–138.Google ScholarCross Ref
    4. Boynton, R. M., and Whitten, D. N. 1970. Visual adaptation in monkey cones: recordings of late receptor potentials. Science 170, 3965, 1423–1426.Google Scholar
    5. Breneman, E. 1977. Perceived saturation in complex stimuli viewed in light and dark surrounds. J. Opt. Soc. Am. 67, 5, 657–662.Google ScholarCross Ref
    6. Carroll, J., Neitz, J., and Neitz, M. 2002. Estimates of L:M cone ratio from ERG flicker photometry and genetics. J. Vision 2, 8, 531–542.Google ScholarCross Ref
    7. CIE. 1981. An analytic model for describing the influence of lighting parameters upon visual performance. CIE Pub. 19/2.1, CIE, Vienna, Austria.Google Scholar
    8. CIE. 1986. Colorimetry. CIE Pub. 15.2, CIE, Vienna, Austria.Google Scholar
    9. CIE. 1998. The CIE 1997 interim colour appearance model (simple version), CIECAM97s. CIE Pub. 131, CIE, Vienna, Austria.Google Scholar
    10. Dolby. 2008. Dolby’s High-Dynamic-Range Technologies: Breakthrough TV Viewing. Tech. rep., Dolby Laboratories, Inc.Google Scholar
    11. Durand, F., and Dorsey, J. 2002. Fast bilateral filtering for the display of high-dynamic-range images. ACM Trans. Graph. (Proc. SIGGRAPH) 21, 3, 257–266. Google ScholarDigital Library
    12. Estévez, O. 1979. On the Fundermental Data-Base of Normal and Dichromatic Colour Vision. Ph.D. thesis, University of Amsterdam.Google Scholar
    13. Fairchild, M. D. 2005. Color Appearance Models, 2nd ed. John Wiley, Chichester, England.Google Scholar
    14. Ferwerda, J. A., Pattanaik, S. N., Shirley, P., and Greenberg, D. P. 1996. A model of visual adaptation for realistic image synthesis. In Proc. SIGGRAPH 96, 249–258. Google ScholarDigital Library
    15. Hunt, R. W. G., Li, C. J., and Luo, M. R. 2003. Dynamic cone response functions for models of colour appearance. Color Res. Appl. 28, 2, 82–88.Google ScholarCross Ref
    16. Hunt, R. 1994. An improved predictor of colourfulness in a model of colour vision. Color Res. Appl. 19, 1, 23–26.Google Scholar
    17. Hunt, R. W. G. 2004. The Reproduction of Colour, 6th ed. John Wiley, Chichester, England.Google Scholar
    18. Johnson, G. M., and Fairchild, M. D. 2003. Rendering HDR images. In Proc. Color Imaging Conference, IS&T, 36–41.Google Scholar
    19. Kim, M. H., and Kautz, J. 2008. Characterization for high dynamic range imaging. Computer Graphics Forum (Proc. EUROGRAPHICS) 27, 2, 691–697.Google ScholarCross Ref
    20. Kuang, J. T., Johnson, G. M., and Fairchild, M. D. 2007. iCAM06: A refined image appearance model for HDR image rendering. J. Visual Communication and Image Representation 18, 5, 406–414. Google ScholarDigital Library
    21. Land, E. H., and McCann, J. J. 1971. Lightness and retinex theory. J. Opt. Soc. Am. 61, 1, 1–11.Google ScholarCross Ref
    22. Li, C., Luo, M. R., Rigg, B., and Hunt, R. W. G. 2002. CMC 2000 chromatic adaptation transform: CMCCAT2000. Color Res. Appl. 27, 1, 49–58.Google ScholarCross Ref
    23. Luo, M. R., and Hunt, R. W. G. 1998. Testing colour appearance models using corresponding — colour and magnitude — estimation data sets. Color Res. Appl. 23, 3, 147–153.Google ScholarCross Ref
    24. Luo, M. R., Clarke, A. A., Rhodes, P. A., Schappo, A., Scrivener, S. A. R., and Tait, C. J. 1991. Quantifying colour appearance. Part I. LUTCHI colour appearance data. Color Res. Appl. 16, 3, 166–180.Google ScholarCross Ref
    25. Luo, M. R., Gao, X. W., Rhodes, P. A., Xin, H. J., Clarke, A. A., and Scrivener, S. A. R. 1993. Quantifying colour appearance. Part IV. Transmissive media. Color Res. Appl. 18, 3, 191–209.Google ScholarCross Ref
    26. Mantiuk, R., Mantiuk, R., Tomaszewska, A., and Heidrich, W. 2009. Color correction for tone mapping. Computer Graphics Forum (Proc. of EUROGRAPHICS) 28, 2, 193–202.Google ScholarCross Ref
    27. Michaelis, L., and Menten, M. L. 1913. The kinetics of invertase activity. Biochemische Zeitschrift 49, 333, 166–180.Google Scholar
    28. Moroney, N., Fairchild, M. D., Hunt, R. W. G., Li, C., Luo, M. R., and Newman, T. 2002. The CIECAM02 color appearance model. In Proc. Color Imaging Conference, IS&T, 23–27.Google Scholar
    29. Müller, G. E. 1930. Über die Farbenempfindungen. Z. Psychol., Erganzungsbände 17 and 18.Google Scholar
    30. Pattanaik, S. N., Ferwerda, J. A., Fairchild, M. D., and Greenberg, D. P. 1998. A multiscale model of adaptation and spatial vision for realistic image display. In Proc. SIGGRAPH 98, 287–298. Google ScholarDigital Library
    31. Pointer, M. R. 1980. The concept of colourfulness and its use for deriving grids for assessing colour appearance. Color Res. Appl. 5, 2, 99–107.Google ScholarCross Ref
    32. Reinhard, E., Stark, M., Shirley, P., and Ferwerda, J. 2002. Photographic tone reproduction for digital images. ACM Trans. Graph. (Proc. SIGGRAPH) 21, 3, 267–276. Google ScholarDigital Library
    33. Seetzen, H., Heidrich, W., Stuerzlinger, W., Ward, G., Whitehead, L., Trentacoste, M., Ghosh, A., and Vorozcovs, A. 2004. High dynamic range display systems. ACM Trans. Graph. (Proc. SIGGRAPH) 23, 3, 760–768. Google ScholarDigital Library
    34. Seetzen, H., Li, H., Ye, L., Heidrich, W., Whitehead, L., and Ward, G. 2006. Observations of luminance, contrast and amplitude resolution of displays. SID Symposium 37, 1, 1229–1233.Google ScholarCross Ref
    35. Stevens, S., and Stevens, J. 1963. Brightness function: Effects of adaptation. J. Opt. Soc. Am. 53, 3, 375–385.Google ScholarCross Ref
    36. Stevens, S. S. 1971. Issues in psychophysical measurement. Psychological Review 78, 426–450.Google ScholarCross Ref
    37. Tumblin, J., and Rushmeier, H. E. 1993. Tone reproduction for realistic images. IEEE Comput. Graphics. Appl. 13, 6, 42–48. Google ScholarDigital Library
    38. Valeton, J. M., and van Norren, D. 1983. Light adaptation of primate cones: an analysis based on extracellular data. Vision Research 23, 12, 1539–1547.Google ScholarCross Ref
    39. Vos, J. J., and Walraven, P. L. 1971. On the derivation of the foveal receptor primaries. Vision Research 11, 8, 799–818.Google ScholarCross Ref
    40. Ward, G. 1994. A contrast-based scalefactor for luminance display. In Graphics Gems IV, P. S. Heckbert, Ed. Academic Press Professional, Boston, MA, 415–421. Google ScholarDigital Library

ACM Digital Library Publication:

Overview Page: