“Modeling and rendering of quasi-homogeneous materials”

  • ©




    Modeling and rendering of quasi-homogeneous materials


    Many translucent materials consist of evenly-distributed heterogeneous elements which produce a complex appearance under different lighting and viewing directions. For these quasi-homogeneous materials, existing techniques do not address how to acquire their material representations from physical samples in a way that allows arbitrary geometry models to be rendered with these materials. We propose a model for such materials that can be readily acquired from physical samples. This material model can be applied to geometric models of arbitrary shapes, and the resulting objects can be efficiently rendered without expensive subsurface light transport simulation. In developing a material model with these attributes, we capitalize on a key observation about the subsurface scattering characteristics of quasi-homogeneous materials at different scales. Locally, the non-uniformity of these materials leads to inhomogeneous subsurface scattering. For subsurface scattering on a global scale, we show that a lengthy photon path through an even distribution of heterogeneous elements statistically resembles scattering in a homogeneous medium. This observation allows us to represent and measure the global light transport within quasi-homogeneous materials as well as the transfer of light into and out of a material volume through surface mesostructures. We demonstrate our technique with results for several challenging materials that exhibit sophisticated appearance features such as transmission of back illumination through surface mesostructures.


    1. Bouguet, J.-Y., and Perona. P. 1998. 3d photography on your desk. In Proc. Int. Conf. on Computer Vision. 43–50. Google ScholarDigital Library
    2. Chen, W.-C., Bouguet, J.-Y. Chu. M. H., and Grzeszczuk, R. 2002. Light field mapping: Efficient representation and hardware rendering of surface light fields. ACM Trans. on Graphics 21, 3, 447–456. Google ScholarDigital Library
    3. Chen, Y., Tong, X., Wang, J., Lin, S., Guo. B., and Shum. H.-Y. 2004. Shell texture functions. ACM Trans. on Graphics 23, 3, 343–353. Google ScholarDigital Library
    4. Chuang, Y.-Y., Zongker, D. E., Hindorff, J., Curless, B., Salesin, D. H., and Szeliski, R. 2000. Environment matting extensions: towards higher accuracy and real-time capture. In Proc. SIGGRAPH 2000, 121–130. Google ScholarDigital Library
    5. Dana, K. J., Van Ginneken. B., Nayar, S. K., and Koenderink, J. J. 1999. Reflectance and texture of real-world surfaces. ACM Trans. on Graphics 18, 1, 1–34. Google ScholarDigital Library
    6. Dana, K. J., 2001. Brdf/btf measurement device. In Proc. Int. Conf. on Computer Vision. vol. 2, 460–466.Google ScholarCross Ref
    7. Debevec, P., Hawkins, T., Tchou, C., Duiker, H.-P., Sarokin, W., and Sagar, M. 2000. Acquiring the reflectance field of a human face. In Proc. SIGGRAPH 2000, 145–156. Google ScholarDigital Library
    8. Dorsey, J., Edelman. A., Legakis, J., Jensen, H. W., and Pedersen, H. K. 1999. Modeling and rendering of weathered stone. In Proc. SIGGRAPH 1999, 225–234. Google ScholarDigital Library
    9. Fiume, E. 2001. Dedication to Alain Fournier. In Proc. SIGGRAPH ’01, 10.Google Scholar
    10. Gardner, A., Tchou, C., Hawkins, T., and Debevec, P. 2003. Linear light source reflectometry. Proc. SIGGRAPH ’03, 749–758. Google ScholarDigital Library
    11. Goesele, M., Lensch, H. P. A., Lang, J., Fuchs, C., and Seidel, H.-P. 2004. Disco: acquisition of translucent objects. ACM Trans. on Graphics 23, 3, 835–844. Google ScholarDigital Library
    12. Han, J. Y., and Perlin, K. 2003. Measuring bidirectional texture reflectance with a kaleidoscope. ACM Trans. on Graphics 22, 3, 741–748. Google ScholarDigital Library
    13. Hanrahan, P., and Krueger. W. 1993. Reflection from layered surfaces due to subsurface scattering. In Proc. SIGGRAPH 1993, 165–174. Google ScholarDigital Library
    14. Hao, X., Baby, T., and Varshney, A. 2003. Interactive subsurface scattering for translucent meshes. In ACM Symposium on Interactive 3D Graphics, 75–82. Google ScholarDigital Library
    15. Jensen, H. W., and Buhler, J. 2002. A rapid hierarchical rendering technique for translucent materials. In Proc. SIGGRAPH 2002, 576–581. Google ScholarDigital Library
    16. Jensen, H. W., Marschner, S. R., Levoy, M., and Hanrahan, P. 2001. A practical model for subsurface light transport. In Proc. SIGGRAPH 2001, 511–518. Google ScholarDigital Library
    17. Koenderink, J. J., and Doorn. A. J. V. 1996. Illuminance texture due to surface mesostructure. Journal of the Optical Society of America 13, 3, 452–463.Google ScholarCross Ref
    18. Koenderink, J., and Van Doorn, A. 2001. Shading in the case of translucent objects. Proceedings of SPIE 4299, 312–320.Google Scholar
    19. Lensch, H. P. A., Goesele, M., Bekaert, P., Kautz, J., Magnor, M. A., Lang, J., and Seidel, H.-P. 2003. Interactive rendering of translucent objects. Computer Graphics Forum 22.2, 195–206.Google ScholarCross Ref
    20. Liu, X., Hu, Y., Zhang, J., Tong, X., Guo, B., and Shum, H.-Y. 2004. Synthesis and rendering of bidirectional texture functions on arbitrary surfaces. IEEE Trans. on Visualization and Computer Graphics 10, 3, 278–289. Google ScholarDigital Library
    21. Malzbender, T., Gelb, D., and Wolters. H. 2001. Polynomial texture maps. Proc. SIGGRAPH 2001, 519–528. Google ScholarDigital Library
    22. Masselus, V., Peers, P., Dutrè, P., and Willems, Y. D. 2003. Relighting with 4d incident light fields. ACM Trans. on Graphics 22, 3, 613–620. Google ScholarDigital Library
    23. Matusik, W., Pfister, H., Ngan. A., Beardsley, P., Ziegler, R., and McMillan, L. 2002. Image-based 3d photography using opacity hulls. In Proc. SIGGRAPH ’02, 427–437. Google ScholarDigital Library
    24. Matusik, W., Pfister, H., Ziegler, R., Ngan. A., and McMillan, L. 2002. Acquisition and rendering of transparent and refractive objects. In Proc. Eurographics Workshop on Rendering, 267–278. Google ScholarDigital Library
    25. Matusik, W., Pfister, H., Brand, M., and McMillan. L. 2003. A data-driven reflectance model. ACM Trans. on Graphics 22, 3, 759–769. Google ScholarDigital Library
    26. Mertens, T., Kautz, J., Bekaert, P., Seidel, H.-P., and Reeth, F. V. 2003. Interactive rendering of translucent deformable objects. In Proc. Eurographics Workshop on Rendering, 130–140. Google ScholarDigital Library
    27. Mitsunaga, T., and Nayar, S. 1999. Radiometric self calibration. In Proc. Computer Vision and Pattern Recognition, 1374–1380.Google Scholar
    28. Mueller, G., Meseth, J., and Klein, R. 2003. Compression and real-time rendering of measured BTFs using local PCA. In Proc. Vision, Modeling and Vis.Google Scholar
    29. Nicodemus, F. E., Richmond, J. C., Hsia, J. J., Ginsberg, I. W., and Limperis, T. 1977. Geometrical Considerations and Nomenclature for Reflectance. National Bureau of Standards (US).Google Scholar
    30. Pharr, M., and Hanrahan, P. M. 2000. Monte Carlo evaluation of non-linear scattering equations for subsurface reflection. In Proc. SIGGRAPH 2000, 275–286. Google ScholarDigital Library
    31. Sloan, P.-P., Liu, X., Shum, H.-Y., and Snyder, J. 2003. Bi-scale radiance transfer. ACM Trans. on Graphics 22, 3, 370–375. Google ScholarDigital Library
    32. Suykens, F., Vom Berge, K., Lagae, A., and Dutré, P. 2003. Interactive rendering with bidirectional texture functions. In Proc. Eurographics 03.Google Scholar
    33. Ward, G. J. 1992. Measuring and modeling anisotropic reflection. In Proc. SIGGRAPH ’92, 265–272. Google ScholarDigital Library
    34. Wood, D., Azuma, D., Aldinger, W., Curless, B., Duchamp, T., Salesin, D., and Stuetzle, W. 2000. Surface light fields for 3D photography. Proc. SIGGRAPH 2000, 287–296. Google ScholarDigital Library
    35. Zhang, Z. 1999. Flexible camera calibration by viewing a plane from unknown orientations. In Proc. Int. Conf. on Computer Vision, 666–673.Google ScholarCross Ref
    36. Zongker, D. E., Werner, D. M., Curless, B., and Salesin, D. H. 1999. Environment matting and compositing. In Proc. SIGGRAPH 1999, 205–214. Google ScholarDigital Library

ACM Digital Library Publication:

Overview Page: