“Micropolygon ray tracing with defocus and motion blur” by Hou, Qin, Li, Guo and Zhou

  • ©Qiming Hou, Hao Qin, Wenyao Li, Baining Guo, and Kun Zhou




    Micropolygon ray tracing with defocus and motion blur



    We present a micropolygon ray tracing algorithm that is capable of efficiently rendering high quality defocus and motion blur effects. A key component of our algorithm is a BVH (bounding volume hierarchy) based on 4D hyper-trapezoids that project into 3D OBBs (oriented bounding boxes) in spatial dimensions. This acceleration structure is able to provide tight bounding volumes for scene geometries, and is thus efficient in pruning intersection tests during ray traversal. More importantly, it can exploit the natural coherence on the time dimension in motion blurred scenes. The structure can be quickly constructed by utilizing the micropolygon grids generated during micropolygon tessellation. Ray tracing of defocused and motion blurred scenes is efficiently performed by traversing the structure. Both the BVH construction and ray traversal are easily implemented on GPUs and integrated into a GPU-based micropolygon renderer. In our experiments, our ray tracer performs up to an order of magnitude faster than the state-of-art rasterizers while consistently delivering an image quality equivalent to a maximum-quality rasterizer. We also demonstrate that the ray tracing algorithm can be extended to handle a variety of effects, such as secondary ray effects and transparency.


    1. Aila, T., and Laine, S. 2009. Understanding the efficiency of ray traversal on GPUs. In Proceedings of HPG ’09, ACM, New York, NY, USA, 145–149. Google ScholarDigital Library
    2. Christensen, P. H., Laur, D. M., Fong, J., Wooten, W. L., and Batali, D. 2003. Ray differentials and multiresolution geometry caching for distribution ray tracing in complex scenes. In Proceedings of Eurographics 2003, Blackwell Publishers, 543–552.Google Scholar
    3. Christensen, P., Fong, J., Laur, D., and Batali, D. 2006. Ray tracing for the movie ‘cars’. In Proceedings of IEEE Symposium on Interactive Ray Tracing, 1–6.Google Scholar
    4. Christensen, P. H. 2008. Point-based approximate color bleeding. Tech. rep., Pixar Technical Memo #08-01.Google Scholar
    5. Cook, R. L., Porter, T., and Carpenter, L. 1984. Distributed ray tracing. SIGGRAPH Comput. Graph. 18, 3, 137–145. Google ScholarDigital Library
    6. Cook, R. L., Carpenter, L., and Catmull, E. 1987. The Reyes image rendering architecture. SIGGRAPH Comput. Graph. 21, 4, 95–102. Google ScholarDigital Library
    7. Cook, R. L., Porter, T. K., and Carpenter, L. C., 1993. Pseudo-random point sampling techniques in computer graphics, US Patent 5239624.Google Scholar
    8. Cook, R. L. 1986. Stochastic sampling in computer graphics. ACM Trans. Gr. 5, 1, 51–72. Google ScholarDigital Library
    9. Demers, J. 2004. Depth of field: A survey of techniques. GPU Gems, 375–390.Google Scholar
    10. Egan, K., Tseng, Y.-T., Holzschuch, N., Durand, F., and Ramamoorthi, R. 2009. Frequency analysis and sheared reconstruction for rendering motion blur. ACM Trans. Gr. 28, 3, 1–13. Google ScholarDigital Library
    11. Fatahalian, K., Luong, E., Boulos, S., Akeley, K., Mark, W. R., and Hanrahan, P. 2009. Data-parallel rasterization of micropolygons with defocus and motion blur. In Proceedings of HPG ’09, 59–68. Google ScholarDigital Library
    12. Fisher, M., Fatahalian, K., Boulos, S., Akeley, K., Mark, W. R., and Hanrahan, P. 2009. Diagsplit: parallel, crack-free, adaptive tessellation for micropolygon rendering. ACM Trans. Graph. 28, 5, 1–10. Google ScholarDigital Library
    13. Glassner, A. S. 1988. Spacetime ray tracing for animation. IEEE Comput. Graph. Appl. 8, 2, 60–70. Google ScholarDigital Library
    14. Hachisuka, T., Jarosz, W., Weistroffer, R. P., Dale, K., Humphreys, G., Zwicker, M., and Jensen, H. W. 2008. Multidimensional adaptive sampling and reconstruction for ray tracing. ACM Trans. Gr. 27, 3, 1–10. Google ScholarDigital Library
    15. Haeberli, P., and Akeley, K. 1990. The accumulation buffer: hardware support for high-quality rendering. In Proceedings of ACM SIGGRAPH ’90, 309–318. Google ScholarDigital Library
    16. Hou, Q., Zhou, K., and Guo, B. 2008. BSGP: Bulk-synchronous GPU programming. ACM Trans. Gr. 27, 3, 9. Google ScholarDigital Library
    17. Hsieh, P., 2004. Hash functions. http://www.azillionmonkeys.com/qed/hash.html.Google Scholar
    18. Hubbard, P. M. 1995. Collision detection for interactive graphics applications. IEEE TVCG 1, 3, 218–230. Google ScholarDigital Library
    19. Ize, T., Wald, I., and Parker, S. G. 2008. Ray tracing with the BSP tree. In Proceedings of IEEE Symposium on Interactive Ray Tracing, 159–166.Google Scholar
    20. Kass, M., Lefohn, A., and Owens, J. 2006. Interactive depth of field. Tech. rep., Pixar Technical Memo #06-01.Google Scholar
    21. Lauterbach, C., Garland, M., Sengupta, S., Luebke, D., and Manocha, D. 2009. Fast BVH construction on GPUs. Computer Graphics Forum 28, 2, 375–384.Google ScholarCross Ref
    22. Lee, S., Eisemann, E., and Seidel, H.-P. 2009. Depth-of-field rendering with multiview synthesis. ACM Trans. Gr. 28, 5, 1–6. Google ScholarDigital Library
    23. Morton. 1966. A computer oriented geodetic data base and a new technique in file sequencing. Tech. Rep. Ottawa, Ontario, Canada.Google Scholar
    24. Overbeck, R. S., Donner, C., and Ramamoorthi, R. 2009. Adaptive wavelet rendering. ACM Trans. Graph. 28, 5, 1–12. Google ScholarDigital Library
    25. Patney, A., and Owens, J. D. 2008. Real-time reyes-style adaptive surface subdivision. ACM Trans. Gr. 27, 5, 1–8. Google ScholarDigital Library
    26. Shevtsov, M., Soupikov, A., and Kapustin, A. 2007. Highly parallel fast kd-tree construction for interactive ray tracing of dynamic scenes. In Proceedings of Eurographics ’07, 395–404.Google Scholar
    27. Shirley, P., and Chiu, K. 1997. A low distortion map between disk and square. Journal of Graphics Tools 2, 3, 45–52. Google ScholarDigital Library
    28. Soler, C., Subr, K., Durand, F., Holzschuch, N., and Sillion, F. 2009. Fourier depth of field. ACM Trans. Gr. 28, 2, 1–12. Google ScholarDigital Library
    29. Sung, K., Pearce, A., and Wang, C. 2002. Spatial-temporal antialiasing. IEEE TVCG 8, 2, 144–153. Google ScholarDigital Library
    30. Wald, I., Boulos, S., and Shirley, P. 2007. Ray tracing deformable scenes using dynamic bounding volume hierarchies. ACM Trans. Gr. 26, 1, 6. Google ScholarDigital Library
    31. Wald, I. 2007. On fast construction of SAH-based bounding volume hierarchies. In Proceedings of IEEE Symposium on Interactive Ray Tracing, 33–40. Google ScholarDigital Library
    32. Weisstein, E. W. Magic square. http://mathworld.wolfram.com/MagicSquare.html.Google Scholar
    33. Zhou, K., Hou, Q., Wang, R., and Guo, B. 2008. Real-time kd-tree construction on graphics hardware. ACM Trans. Gr. 27, 5, 126. Google ScholarDigital Library
    34. Zhou, K., Hou, Q., Ren, Z., Gong, M., Sun, X., and Guo, B. 2009. RenderAnts: interactive Reyes rendering on GPUs. ACM Trans. Gr. 28, 5, 1–11. Google ScholarDigital Library

ACM Digital Library Publication: